Preprint
Review

Artificial Intelligence for Sustainable Complex Socio-Technical-Economic-Ecosystems.

Altmetrics

Downloads

265

Views

283

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

18 August 2021

Posted:

23 August 2021

You are already at the latest version

Alerts
Abstract
The strong couplings among ecological, economic, social and technological processes explains the complexification of human-made systems, and phenomena such as globalization, climate change, the increased urbanization and inequality of human societies, the power of information, and the COVID-19 syndemics. Among complexification’s essential features are non-decomposability, asynchronous behavior, components with many degrees of freedom, increased likelihood of catastrophic events, irreversibility, nonlinear phase spaces with immense combinatorial sizes, and the impossibility of long-term, detailed prediction. Sustainability for complex systems implies enough efficiency to explore and exploit their dynamic phase spaces and enough flexibility to coevolve with their environments. This in turn means solving intractable nonlinear semi-structured dynamic multi-objective optimization problems, with conflicting, incommensurable, non-cooperative objectives and purposes, under dynamic uncertainty, restricted access to materials, energy and information, and a given time horizon, aiming at enhancing the co-evolutionary power of the Biosphere and its human subsystems. Giving the high-stakes, the need for effective, efficient, diverse solutions, their local-global, present-future effects, and their unforeseen short, medium and long-term impacts, achieving sustainable complex systems implies the need for Sustainability-designed Universal Intelligent Agents, harnessing the strong functional coupling between human, artificial and nonhuman biological intelligence in a no-zero-sum game to achieve sustainability.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated