Preprint
Article

Identifying the Main Risk Factors for CVD Prediction Using Machine Learning Algorithms

Altmetrics

Downloads

353

Views

309

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

23 August 2021

Posted:

24 August 2021

You are already at the latest version

Alerts
Abstract
CVDs are a leading cause of death globally. In CVDs, the heart is unable to deliver enough blood to other body regions. Since effective and accurate diagnosis of CVDs is essential for CVD prevention and treatment, machine learning (ML) techniques can be effectively and reliably used to discern patients suffering from a CVD from those who do not suffer from any heart condition. Namely, machine learning algorithms (MLAs) play a key role in the diagnosis of CVDs through predictive models that allow us to identify the main risks factors influencing CVD development. In this study, we analyze the performance of ten MLAs on two datasets for CVD prediction and two for CVD diagnosis. Algorithm performance is analyzed on top-two and top-four dataset attributes/features with respect to five performance metrics –accuracy, precision, recall, f1-score, and roc-auc – using the train-test split technique and k-fold cross-validation. Our study identifies the top two and four attributes from each CVD diagnosis/prediction dataset. As our main findings, the ten MLAs exhibited appropriate diagnosis and predictive performance; hence, they can be successfully implemented for improving current CVD diagnosis efforts and help patients around the world, especially in regions where medical staff is lacking.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated