Preprint
Article

Biomass Burning and Gas Flares create the extreme West African Aerosol Plume Which Perturbs the Hadley Circulation and thereby Changes Europe’s Winter Climate

Altmetrics

Downloads

394

Views

521

Comments

0

This version is not peer-reviewed

Submitted:

29 December 2021

Posted:

29 December 2021

You are already at the latest version

Alerts
Abstract
Three significant changes have occurred in the winter climate in Europe recently: increased UK flooding; Iberian drought; and warmer temperatures north of the Alps. The literature links all three to a persistent, significant increase in sea level pressure over Southern Europe, the Mediterranean, Iberia and the Eastern Atlantic (SEMIEA) which changes the atmospheric circulation system: forcing cold fronts to the north away from Iberia; and creating a south westerly flow around the northern perimeter of the high-pressure region bringing warmer, moist air from the subtropical Atlantic to the UK and Europe which increases precipitation in the UK and raises the temperature in Europe. I use the Last Millennium Ensemble, MERRA-2 and Terra-NCEP data to demonstrate that the extreme, anthropogenic, West African aerosol Plume (WAP) which only exists from December to April perturbs the northern, regional Hadley Circulation creating the high pressure in the SEMIEA. I also show that the anthropogenic WAP has only existed in its extreme form in recent decades as the two major sources of the WAP aerosols: biomass burning; and gas flaring have both increased significantly since 1950 due to: a four-fold increase in population; and gas flaring rising from zero to 7.4 billion m3/annum and note that this time span coincides with the changes in the three elements of the winter climate of Europe. I also suggest that it may be possible to eliminate the WAP and return the winter climate of Europe to its natural state after the crucial first step of recognising the cause of the changes is taken.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated