Preprint
Article

Big Five Personality Detection Using Deep Convolutional Neural Networks

Altmetrics

Downloads

1499

Views

593

Comments

0

This version is not peer-reviewed

Submitted:

12 September 2021

Posted:

13 September 2021

You are already at the latest version

Alerts
Abstract
Personality is the most critical feature that tells us about an individual. It is the collection of the individual’s thoughts, opinions, emotions and more. Personality detection is an emerging field in research and Deep Learning models have only recently started being developed. There is a need for a larger dataset that is unbiased as the current dataset that is used is in the form of questionnaires that the individuals themselves answer, hence increasing the chance of unconscious bias. We have used the famous stream-of-consciousness essays collated by James Pennbaker and Laura King. We have used the Big Five Model often known as the five-factor model or OCEAN model. Document-level feature extraction has been performed using Google’s word2vec embeddings and Mairesse features. The processed data has been fed into a deep convolutional network and a binary classifier has been used to classify the presence or absence of the personality trait. Hold- out method has been used to evaluate the model, and the F1 score has been used as the performance metric.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated