Preprint
Article

Effects of Intercropping on Soil Fractal Dimension and Physicochemical Properties in the Karst Areas

Altmetrics

Downloads

244

Views

246

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

10 September 2021

Posted:

15 September 2021

You are already at the latest version

Alerts
Abstract
Suitable soil structure and nutrient security are important for plant growth and development, characteristics of soil fractal dimension and distribution of physical and chemical properties and their interactions play an important role in studying the stability of soil structure and water and fertilizer cycles. As a sustainable management model, intercropping has positive benefits for erosion control, spatial optimization of resources, as well as improving system productivity. The effects of four intercropping methods on soil fractal dimension and physicochemical properties were investigated by intercropping Salvia miltiorrhiza with forage and S. miltiorrhiza with forest under typical karst rock desertification habitats in Guizhou. The results showed that soil nutrient content of intercropping was significantly higher than that of monoculture, the organic carbon content of soil grown under forest is higher than other treatments, and there was a non-significant change in soil water content of intercropping compared with monoculture. The soil fine-grained matter of intercropping was significantly higher than that of monoculture, while the soil fractal dimension showed a tendency to become larger with the increase of fine-grained matter. The intercropping planting, due to its component types and spatial and temporal configurations, leads to differences in soil water and fertilizer interactions, which can be combined with other ecological restoration measures to optimize the composite model and jointly promote the restoration and development of ecologically fragile areas.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated