Molecular Dynamics (MD) simulations model motion of molecules in atomistic detail and aid in drug design. While simulations on large systems may require several days to complete, analysis of terabytes of data generated in the process could also be time consuming. Recent studies captured exciting and dramatic drug-receptor interactions under cell-like complex conditions. Such advances make simulations of biomolecular interactions more realistic, insightful, and informative and have potential to make drug design more realistic. However, currently available resources and techniques do not provide, in reasonable time, a comprehensive understanding of events seen in simulations. We demonstrate that big data approach results in significant speedups, and provides rapid insights into simulations performed. Advancing this improvement, we propose a scalable, self-tuning, and responsive framework based on Cloud-infrastructure to accomplish the best possible MD studies with given priorities and within available resources.
Keywords:
Subject: Medicine and Pharmacology - Pharmacy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.