Preprint
Article

Methodological Investigation for Hydrogen Addition to Small Cage Carbon Fullerenes

Altmetrics

Downloads

391

Views

475

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 September 2021

Posted:

21 September 2021

You are already at the latest version

Alerts
Abstract
Hydrogenated small fullerenes (Cn, n<60) are of interest as potential astrochemical species, and as intermediates in hydrogen catalysed fullerene growth. However computational identification of key stable species is difficult due to the vast combinatorial space of structures. In this study we explore routes to predict stable hydrogenated small fullerenes. We show that neither local fullerene geometry nor local electronic structure analysis are able to correctly predict subsequent low energy hydrogenation sites, and indeed sequential stable addition searches also sometimes fail to identify most stable hydrogenated fullerene isomers. Of the empirical and semi-empirical methods tested, GFN2-xTB consistently gives highly accurate energy correlation (r>0.99) to full DFT-LDA calculations at a fraction of the computational cost. This allows identification of the most stable hydrogenated fullerenes up to 4H for four fullerenes, namely two isomers of C28 and C40, via “brute force” systematic testing of all symmetry inequivalent combinations. The approach shows promise for wider systematic studies of smaller hydrogenated fullerenes.
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated