Preprint
Article

Optimizing Few-Shot Learning based on Variational Autoencoders

Altmetrics

Downloads

431

Views

350

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

21 September 2021

Posted:

22 September 2021

You are already at the latest version

Alerts
Abstract
Despite the importance of few-shot learning, the lack of labeled training data in the real world, makes it extremely challenging for existing machine learning methods as this limited data set does not represent the data variance well. In this research, we suggest employing a generative approach using variational autoencoders (VAEs), which can be used specifically to optimize few-shot learning tasks by generating new samples with more intra-class variations. The purpose of our research is to increase the size of the training data set using various methods to improve the accuracy and robustness of the few-shot face recognition. Specifically, we employ the VAE generator to increase the size of the training data set, including the basic and the novel sets while utilizing transfer learning as the backend. Based on extensive experimental research, we analyze various data augmentation methods to observe how each method affects the accuracy of face recognition. We conclude that the face generation method we proposed can effectively improve the recognition accuracy rate to 96.47% using both the base and the novel sets.
Keywords: 
Subject: Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated