In this paper, a new design of a helium-assisted hybrid drone is proposed for flight time enhancement. As is widely known, most of the drones with a VTOL (vertical take-off and landing) feature have a short operation time, limiting their capability to carry out sustainable operations for the given missions. Thus, with the clear goal of enhancing the flight time, this study aims to develop a hybrid drone system, where a helium balloon is used to provide a lifting force for this purpose. The proposed design for the hybrid drone has several benefits including easiness to manufacture and relatively small size when compared to other types of hybrid drones. Various analyses are conducted for the design of the hybrid drone system including the balloon shape and size, buoyant force, flight time, and connector design. Since stability and performance are one of the most important issues for the new design, the pole location analysis is conducted based on the control theory. This rigorous analysis provides that the proposed hybrid drone design is stable as well as robust against swinging motions. To validate the effectiveness of the proposed design and flight time enhancement, simulations were conducted and experimental results are also provided using the manufactured hybrid drone system. Through the real experiments, it is proved that the hybrid drone can increase the flight time more than 2.5 times while guaranteeing stable motions.
Keywords:
Subject: Engineering - Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.