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Abstract: I review the solution of QCD in two spacetime dimensions. Following the analysis of Baluni,
for a single flavor the model can be analyzed using Abelian bosonization. The theory can be analyzed in
strong coupling, when the quarks are much lighter than the gauge coupling. In this limit, the theory is
given by a Luttinger liquid.
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1. Introduction

It is a pleasure to be able to contribute to this volume in memory of Dr. Hector deVega. Hector was
both a great physicist and a true gentleman. It was an honor to have the opportunity to collaborate with
him on physics [1,2], but to have him as a friend.

This subject of this pedagogical article is not directly about keV warm dark matter, to which this
volume is devoted, but to another topic, somewhat similar to work which Hector and I did together
previously [1,2]. This is the behavior of Quantum ChromoDynamics (QCD) in 1 + 1 dimensions. This
problem has been analyzed several times over the years, and recently in a work by myself, with Marton
Lajer, Alexei Tsvelik, and Robert Konik [3]. The purpose of this article is to bring together the results,
which tend to span a rather wide range of methods. What is interesting is that if one concentrates just
upon the low energy excitations for cold, dense QCD in 1 + 1 dimensions, then the theory reduces to that
for a single, massless boson, which propagates with a speed of light which is less than one. This is what is
known as a Luttinger liquid.

I first sketch how to derive these results, and then conclude with some speculations at to their possible
relevance for cold, dense QCD in 3 + 1 dimensions.

2. QCD for a single flavor

We begin with the usual Lagrangian for QCD, where the quarks lie in the fundamental representation
of a SU(Nc) color group,

L =
∫

d2x
[
− 1

4
trGµνGµν + q̄ f ,σγµDµ,σσ′q f ,σ′ + mq̄ f ,σq f ,σ

]
. (1)

Dµ = ∂µ − igAµ ; Gµν = ∂µ Aν − ∂ν Aµ − ig[Aµ, Aν] . (2)

The gauge coupling g has dimensions of mass in two spacetime dimensions; the quark fields q̄, q carry
a, b . . . = 1, ...N f flavor and α, β . . . = 1, ...Nc color indices.

In two dimensions, gauge fields are not propagating degrees of freedom, which allows one to simplify
the theory. It helps to choose the gauge A0 = 0. That still leaves Ax, which for simplicity I denote just as
the color matrix A. Baluni [4] noted that one can further choose a “hybrid” gauge, which vastly simplifies
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the analysis. First, to assume that the gauge potential, A, is a off-diagonal matrix, and that the electric field,
E, is diagonal:

Aαβ = 0 , α = β ; Eαβ = 0 , α 6= β ; Eαα = −1
2

(
eα − 1

Nc

Nc

∑
β=1

eβ

)
. (3)

This gauge is useful in imposing Gauss’ law, DxE = J0, where J0 is the quark current. Besides the
contribution of the quark current, this also involves the covariant derivative, Dx, and so the commutator
of the gauge potential with the electric field. In the hybrid gauge, however, the diagonal elements of the
electric field are directly proportional to the diagonal elements of the quark current, while the off-diagonal
elements of the gauge potential are proportional to the off-diagonal elements of the quark current:

∂xeα = jαα
0 ; ig(eα − eβ)Aαβ = jαβ

0 α 6= β ; jαβ
0 = q̄αγ0qβ . (4)

There is no sum over repeated indices: jαα
0 is just a single element of the diagonal quark current, with

color α. For the color diagonal current, Aαβ does not enter, because it is taken to be purely off-diagonal.
Similarly, for the elements of the color current which are off-diagonal in color, the spatial derivative of the
electric field does not enter, because it is assumed to be purely diagonal.

In two dimensions there is no magnetic field, so the action for the gauge field just involve the square of
the electric field. Thus the above doesn’t look very useful, since j0 is proportional to the spatial derivative
of the electric field. This is where bosonization is useful, as the current j0 ∼ ∂xφ, where φ is a boson
field. By Gauss’ law, in the hybrid gauge the electric field eα is naturally proportional to the scalar field of
bosonization.

The result for the Hamiltonian after bosonization is

H = H0 +Hint ,

H0 =
1
2

Nc

∑
α=1

π2
α + 2mΛ

(
1− cos(2

√
πeα)

)
,

Hint =
g2

8πNc

Nc

∑
α,β=1

(
eα − eβ

)2
+ Λ2

Nc

∑
α,β=1

sin(2
√

π(eα − eβ))

(eα − eβ)
, (5)

where πα is the momentum conjugate to the electric field eα. I have been sloppy about normalization,
and in particular about normal ordering. As typical with bosonization, most terms contain ultraviolet
divergences (from tadpole like diagrams), and are only well defined if normal ordered. ey are all massive.
The terms in H0 are standard for bosonization. The term in Hint which is proportional to (eα − eβ)2 is
related to the usual electric field term. The second term inHint arises from the current-current interaction
which the gauge field induces. The mass scale Λ arises from normal ordering, and previous analysis took
it as proportional to the gauge coupling, Λ ∼ g. This at least ensures that the perturbative expansion is
well defined. It is not evident that this is a consistent prescription, nor is it obvious how to normal order
an expression such as cos(φ)/φ.

This form of the theory has been analyzed by several authors [5–12]. I have limited myself to a
single flavor because with two or more flavors,Hint involves the conjugate momenta, πα, as well as the
coordinates eα [5–8]. This significantly complicates the analysis. For several flavors, it is more useful to
adopt non-Abelian bosonization [3,7–13]. Even so, the case of a single flavor is still most illustrative.

Returning to the present approach, even with a single flavor there are Nc − 1 coupled sine-Gordon
models, with an peculiar coupling, from the last term of Hint. A single sine-Gordon model has a rich
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spectrum of excitations: both small fluctuations, analogous to mesons, and kinks and anti-kinks, analogous
to baryons and anti-baryons. With Nc − 1 coupled sine-Gordon models, the spectrum becomes even more
convoluted. Notice, however, that the fields for the lightest mesons are naturally proportional to the
∼ eα − eβ. From the above, their mass is ∼ g, and so th This represents a set of mesons/glueballs. There
are then baryons, given by kinks [5–8] For further studies of the spectra of this model, see Refs. [3,8–12].
Certainly, as a confining gauge theory, it is expected that all excitations are massive.

In Ref. [3], an alternate approach was taken. The gauge Ax = 0 was taken, and the free gauge field
integrated out:

H =
Nc

∑
α=1

∫
dx
[
− iψ̄R,α∂xψR,α + iψ̄L,α∂xψLα −m(ψ̄R,αLα + ψ̄L,αψR,α)

]

− πg2
∫

dxdy
N2

c−1

∑
A=1

JA
0 (x)|x− y|JA

0 (y) , (6)

where JA
R,L are

JA
0 = JA

R + JA
L , JA

R = ψ̄R,α(t)A
αβψR,β, JA

L = ψ̄L,α(t)A
αβψL,β. (7)

the chiral currents formed from right- and left- moving components of the quark field, ψL,R = (1± γ5)ψ.
Here tA are matrices for the adjoint representation, and and R, L are the right- and left moving components
of the quark field. The currents of the right- and left moving quarks JR,L obey a SU(Nc) Kac-Moody
algebra [14].

Introducing the chiral currents is especially useful when expanding about the massless limit. With
the fields ψR,α ∼ exp(i

√
4πϕα) and ψL,α ∼ exp(i

√
4πϕ̄α). After bosonizing the current-current interaction,

one obtains two terms in the potential. The first is from the diagonal elements,

VCartan = −πg2(1− 1/Nc)
∫

dy|x− y|∂xΦα∂yΦα = g2(1− 1/Nc)ΦαΦα , (8)

where Φ = ϕ + ϕ̄. The off-diagonal terms contribute

Vo f f−diag = ∑
α>β

∫
dy

g2

4π
|x− y|−1

{
cos[
√

4π[ϕαβ(x)− ϕαβ(y)]]

+ cos[
√

4π[ϕ̄αβ(x)− ϕ̄αβ(y)]]− 2|x− y|2 cos[
√

4π[ϕαβ(x) + ϕ̄αβ(y)]]
}

(9)

with ϕαβ = ϕα − ϕβ.
It is useful to contrast these analyses with the solution of QCD at large Nc by ’t Hooft [15]. Again, one

goes to axial gauge, so that the propagator for the gauge field reduces to that of a free field. Doing so, it is
possible to solve the Schwinger-Dyson equation for the quark propagator. This demonstrates a confining
spectrum. This has been extended to nonzero quark density by Bringoltz [16], who finds chiral density
waves for a massive quark.

There is a peculiarity in the diagonal potential, VCartan. The bosonized fields, ϕ or ϕ̄, are manifestly
periodic. However, VCartan is clearly not periodic. This is also present in the previous form, the “mass”
term in Eq. (5). It wasn’t apparent in this form, nor the lack of periodicity appreciated. In terms of the
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ϕ and ϕ̄ fields, though, it demonstrates that since periodicity is lost, the only topologically non-trivial
configurations are those which involve the sum of all angles The only soft mode remaining is the

Φ =
1√
Nc

∑
α

Φα . (10)

The is completely unaffected by the potential terms in Eqs. (8) and (9), which only involve the differences,
ϕα − ϕβ, etc..

The ground state corresponds to the state where all fields are equal. Projecting the mass term onto
this vacuum gives a single sine-gordon model, with a renormalized mass term:

He f f =
1
2

{
Π2 + (∂xΦ)2

}
+ 2

m̃
2π

[
1− cos

(√
4π

Nc
Φ

)]
. (11)

Naturally, the projection assumes that the energy scale generated by the mass term is much smaller than
the energies of the mesonic fields. Besides the U(1) field Φ, there are also color singlet excitations above
ΛQCD, involving fluctuations of individual fields Φα around the minimum of the potential. By going to
energies below the scale of the gauge coupling, all of these massive degrees of freedom can be ignored.

This implies that in 1 + 1 dimensions, dense QCD is much simpler than one might expect. By
bosonization, a nonzero chemical potential is incorporated simply by shifting(4π

Nc

)1/2
Φ→ 2 k0x +

(4π

Nc

)1/2
Φ , k0 =

µ

Nc
. (12)

This follows directly because j0 ∼ ∂xφ. It is only Φ is affected, as fermion number only couples to the
global U(1) symmetry for fermion number. The resulting effective Lagrangian is then

L =
1
2
(∂µΦ)2 − m̃

2π
cos

(√
4π

Nc
Φ + 2k0x

)
, (13)

As mentioned above, in vacuum the spectrum of this model consists of a soliton with mass ms, and
anti-soliton with the same mass, and 2Nc − 2 breathers, which are also massive. These are all gauge
invariant states.

The chemical potential does not affect the system until µ > ms. At that point, the solition becomes
massless, while all other states, the anti-solition and the breathers, remain massive. Analysis shows that at
µ > ms, this model renormalizes into that of a Luttinger liquid:

Le f f =
K̃(µ)

2

[
vF(µ)

−1(∂τΦ)2 + vF(µ)(∂xΦ)2
]
, (14)

This is a single, massless boson, which propagates with a speed of light less than unity.
The solution of the model is the following. The overall normalization of the effective Lagrangian is

the Luttinger parameter, K̃, while vF is the Fermi velocity; both are functions of the chemical potential, µ.
The extraction of these dependencies requires the exact solution of the sine-Gordon model.

The limits of these parameters is easy to understand. At the edge of the Fermi surface, where kF → 0,
the Luttinger parameter K̃ → 1. In contrast, the Fermi velocity vF → 0. This implies that the Φ field
doesn’t propagate, as the spatial term vanishes. For asymptotically high density, kF → ∞, the Luttinger
parameter K̃ → 1/Nc, and the Fermi velocity vF → 1. This implies that in the limit of infinite Nc, that there
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is a density at which K̃ goes from being of order one, as is typical of dilute fermions, to of order ∼ 1/Nc.
This is only valid at infinite Nc; at finite NC4,variessmoothlywithdensity.

The solution for arbitrary chemical potential can be carried out through the Thermodynamic Bethe
Ansatz. This is valid for arbitrary fermion mass. It is also possible to compute using perturbation theory in
the mass parameter. Details, and a solution for two flavors and colors, are given in Ref. [3].

For an arbitrary number of flavors, presumably the theory is always a Luttinger liquid. The solution
is rather more complicated, and involves non-Abelian bosonization. For an arbitrary number of flavors, it
is not direct to solve the theory in weak coupling, when the mass is much larger than the gauge coupling.
Thus it is only a conjecture that the theory is a Luttinger liquid, although in two dimensions it is most
natural to expect.

It is an extraordinary feature of Fermi surfaces in two dimensions that the excitations near the Fermi
surface are not fermions, but bosons. This is only possible because of bosonization in two dimensions.

It is impossible to resist speculating upon whether something analogus happens in 3 + 1 dimensions.
In a quarkyonic phase [17–33], while the free energy is that of deconfined quarks and gluons, excitations
near the Fermi surface are confined. It is conceivable that this introduces a strong anisotropy into the
system, so that it is essentially one dimensional. If true, then there is a complicated pattern of excitations
which arise. Especially with two or more light flavors, an involved pattern of chiral density waves can
arise.

What is most intriguing, however, is whether the quarkyonic phase in 3 + 1 dimensions is a Luttinger
liquid. That is, a type of non-Fermi liquid. In particular, are the excitations near the Fermi surface not
controlled by nucleons, but by (effective) bosons. The properties of an effective non-Fermi liquid can be
described by an (anisotropic) effective Lagrangian, and used to compute the transport properties of a
quarkyonic regime.
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