Preprint
Review

Evolution of Synapses and Neurotransmitter Systems: The Divide-and-Conquer Model for Early Neural Cell-Type Evolution

Altmetrics

Downloads

1043

Views

455

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

30 September 2021

Posted:

01 October 2021

You are already at the latest version

Alerts
Abstract
Nervous systems evolved around 560 million years ago to coordinate and empower animal bodies. Ctenophores – one of the earliest-branching lineages – are thought to share few neuronal genes with bilaterians and may have evolved neurons convergently. Here we review our current understanding of the evolution of neuronal molecules in non-bilaterians. We also reanalyse single-cell sequencing data in light of new cell-cluster identities from a ctenophore and uncover evidence supporting the homology of one ctenophore neuron-type with neurons in Bilateria. The specific coexpression of the presynaptic proteins Unc13 and RIM with voltage-gated channels, neuropeptides and homeobox genes pinpoint a spiking sensory-peptidergic cell in the ctenophore mouth. Similar Unc13-RIM neurons may have been present in the first eumetazoans to rise to dominance only in stem Bilateria. We hypothesize that the Unc13-RIM lineage ancestrally innervated the mouth and conquered other parts of the body with the rise of macrophagy and predation during the Cambrian explosion.
Keywords: 
Subject: Biology and Life Sciences  -   Neuroscience and Neurology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated