Photovoltaic (PV) generation is potentially uncertain. Probabilistic PV generation forecasting methods have been proposed with prediction intervals (PIs). However, several studies have dealt with geographically distributed PVs in a certain area. In this study, a two-step probabilistic forecast scheme is proposed for geographically distributed PV generation forecasting. Each step of the proposed scheme adopts ensemble forecasting based on three different machine-learning methods. In this case study, the proposed scheme was compared with conventional non-multistep forecasting. The proposed scheme improved the reliability of the PIs and deterministic PV forecasting results through 30 days of continuous operation with real data in Japan.