You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Evaluating the Death and Recovery of Lateral Line Hair Cells Following Repeated Neomycin Treatments

Altmetrics

Downloads

166

Views

206

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 October 2021

Posted:

04 October 2021

You are already at the latest version

Alerts
Abstract
Acute chemical ablation of lateral line hair cells is an important tool to understand lateral line-mediated behaviors in free-swimming fish larvae and adults. However, lateral line-mediated behaviors have not been described in fish larvae prior to swim bladder inflation, possibly because single doses of ototoxin do not effectively silence lateral line function at early developmental stages. To determine if ototoxins can effectively silence the lateral line during early development, we repeatedly expose zebrafish larvae to the ototoxin neomycin during a 36-hour period from 3-4 days post-fertilization (dpf). We use simultaneous transgenic and vital dye labeling of hair cells to compare 6- hour and 12-hour repeated treatment timelines and neomycin concentrations between 0–400 µM in terms of larval survival, hair cell death, regeneration, and functional recovery. Following exposure to neomycin, we find that the emergence of newly functional hair cells outpaces cellular regeneration, likely due to the maturation of ototoxin-resistant hair cells that survive treatment. Furthermore, hair cells of 4 dpf larvae exhibit faster recovery compared to 3 dpf larvae. Our data suggest that the rapid functional maturation of ototoxin-resistant hair cells limits the effectiveness of chemical-based methods to disrupt lateral line function. Furthermore, we show that repeated neomycin treatments can continually ablate lateral line hair cells between 3–4 dpf in larval zebrafish.
Keywords: 
Subject: Biology and Life Sciences  -   Cell and Developmental Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated