Preprint
Article

A Multichannel Deep Learning Framework for Cyberbullying Detection on Social Media

Altmetrics

Downloads

392

Views

264

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 October 2021

Posted:

05 October 2021

You are already at the latest version

Alerts
Abstract
Online social networks (OSNs) play an integral role in facilitating social interaction; however, these social networks increase antisocial behavior, such as cyberbullying, hate speech, and trolling. Aggression or hate speech that takes place through short message service (SMS) or the Internet (e.g., in social media platforms) is known as cyberbullying. Therefore, automatic detection utilizing natural language processing (NLP) is a necessary first step that helps prevent cyberbullying. This research proposes an automatic cyberbullying method to detect aggressive behavior using a consolidated deep learning model. This technique utilizes multichannel deep learning based on three models, namely, the bidirectional gated recurrent unit (BiGRU), transformer block, and convolutional neural network (CNN), to classify Twitter comments into two categories: aggressive and not aggressive. Three well-known hate speech datasets were combined to evaluate the performance of the proposed method. The proposed method achieved promising results. The accuracy of the proposed method was approximately 88%.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated