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Abstract: We demonstrate a new quantitative method to the sieve of Eratosthenes, which is an
alternative to the sieve of Legendre. In this method, every element of a given set is sifted out once
only, and therefore, this method is free of the Möbius function and of the parity barrier. Using this
method, we prove that every sufficiently large even number is the sum of two primes, and that every
even number is the difference of two primes in infinitely many ways.
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1. Introduction

1.1. Representing Even Numbers from Primes

Since the set of prime numbers is infinite, and since all prime numbers greater than 2 are odd
numbers, then one knows immediately that there are infinitely many even numbers that can be
represented as the sum of two primes, and, infinitely many even numbers that can be represented as
the difference of two primes. Having said that, the following questions then naturally arise:

(i) Can every even number be represented as the sum of two primes?
(ii) Can every even number be represented as the difference of two primes?

(iii) Can any even number, or indeed all even numbers, be represented as the difference of two
primes, in infinitely many ways?

(iv) If questions ′(ii)′ and ′(iii)′ are answered in the affirmative, can they also hold for consecutive
primes, in representing even numbers greater than 4 as the difference of two primes?

The earliest known record to have posed question ′(i)′, known as the Goldbach conjecture, dates
back to 1742, in a correspondence between C. Goldbach and L. Euler, where it is propositioned that
every even number greater than 2 can be represented as the sum of two primes [1]. The Goldbach
conjecture has more lately become known as the binary Goldbach conjecture, or the strong Goldbach
conjecture, in order to distinguish it from the ternary Goldbach conjecture, or the weak Goldbach
conjecture, which states that every odd number greater than 5 can be represented as the sum of three
primes. The binary Goldbach conjecture has to date been shown empirically to hold for every even
number up to 4 · 1018 [2], however, a rigorous proof, or disproof, remains elusive.

Nevertheless, some related theoretical results to the binary Goldbach conjecture have been
achieved, the closest of which is due to J. R. Chen, who in 1973, proved that every sufficiently large
even number can be represented as the sum of a prime and another prime or a semiprime, that is, the
product of two primes [3] [4] [5] [6]. On the other hand, significant results have been achieved for the
ternary Goldbach conjecture, culminating with a proof given by H. Helfgott in 2014 [7] [8] [9].

The earliest known record to have posed questions ′(ii)− (iv)′ are due to Alphonse de Polignac,
who in 1849, conjectured that every even number can be represented as the difference of two
consecutive primes, in infinitely many ways [10]. The most significant special case of Polignac’s
conjecture, is the so-called ‘twin prime conjecture’, which comprises of the number 2 being represented
as the difference of two primes, in infinitely many ways. The twin prime conjecture is hugely supported
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by empirical data, where, over the past few decades, increasingly large twin prime pairs have been
found to exist [11], with the current world record for a twin prime pair, found in the year 2016, standing
at 388, 342 decimal digits long [12].

As with the binary Goldbach Conjecture, the closest theoretical result to Polignac’s conjecture
is given by J. R. Chen, who in the same article, proved that every even number can be represented
as the difference of a prime and another prime or semiprime, that is, the product of at most two
primes [6]. More recently, D. A. Goldston, J. Pintz, and C. Y. Yildirim, introduced the now known ‘GPY
method’, which uses approximations to the prime k-tuples conjecture, to study small numbers that can
be represented as the difference of two primes [13]. In 2013, Yitang Zhang built on the GPY method,
thereby proving for the first time the existence of some even number less than 7 · 107, which can be
represented as the difference of two primes in infinitely many ways [14]. Within a year after Zhang’s
result, J. Maynard presented an independent proof that lowered the bound to 600, which, by assuming
the Elliott-Halberstam conjecture, could be further lowered down to 12 [15]. With some refinements to
Zhang’s method and a combination of that with Maynard’s approach, the bound was lowered to 246
unconditionally, by an on-line collaborative project known as Polymath 8, organised by T. Tao [16].

1.2. Sieve Theory

Sieve theory is a technique for distinguishing specific subsets of integers, amongst the set of
natural numbers. Sieve theory began with Eratosthenes of Cyrene (276-194 B.C.), who constructed a
method with which one could isolate the subset of prime numbers, from the set of natural numbers
[17]. It starts by first crossing the multiples of 2 in the number line up to x, then the multiples of 3,
then the multiples of 5, and then the multiples of all the primes up to

√
x. If an integer n > 1 is not

divisible by any prime p ≤√
x, then n is necessarily a prime. Upon completion of the sieve, one has

# {p ∈ P : p ≤ x} = #
{

n ≤ x : p ∤ n, p ≤
√

x
}

. (1)

Having the means of constructing the complete subset of prime numbers, from the set of natural
numbers up to x, one would be naturally interested in quantifying these primes. To this end, there
are fundamentally two approaches that one could take, in order to quantify the set of prime numbers
generated by the sieve of Eratosthenes. We describe each approach, as follows.

(I) In the first approach, one quantifies the proportion of integers that are sifted out at each round
of the sieve, as

#{multiples of p up to x}
#{integers up to x} .

The appeal of this approach lies in the straightforward quantitative definition of both the subset
of the multiples of p up to x and the complete set of integers up to x. However, the challenging aspect
of this approach arises from the fact that integers which have multiple prime factors are necessarily
counted at multiple rounds of the sieve, which must be accounted for. This is the approach taken by A.
Legendre (1752-1833), who was the first to turn the sieve of Eratosthenes into a quantitative technique,
and this has been the approach taken since.

In the sieve of Legendre, one counts the integers that are sifted out at each round, and then one
subtracts those that are counted at multiple rounds, according to the multiplicity of times that this has
happened, as follows

[x]− ∑
p≤√

x

[

x

p

]

+ ∑
p1<p2

∑
≤√

x

[

x

p1 p2

]

− ∑
p1<p2

∑
<p3

∑
≤√

x

[

x

p1 p2 p3

]

+ − · · · ; (2)
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from which, one obtains Legendre’s formula

π (x)− π
(√

x
)

+ 1 = ∑
d

p|d→p≤√
x

µ (d)
[ x

d

]

, (3)

where µ (d) is the Möbius function, introduced by A. F. Möbius (1790–1868), and defined as

µ (n) :=















1 if x is square-free and has an even number of prime factors,

−1 if x is square-free and has an odd number of prime factors,

0 if x is not square-free.

(4)

In efforts to evaluate the right-hand side of 3, one has

π (x)− π
(√

x
)

+ 1 = x ∑
d

µ (d)

d
+ R = x

p≤√
x

∏
p=p1

p − 1
p

+ R, (5)

where the remainder R is
R = −∑

d

µ (d)
{ x

d

}

, (6)

which doubles at each round of the sieve, and thus quickly becomes larger than x.
In modern sieve methods, one tries to replace µ (n) by a function Λ = (λd), referred to as the

“sieve weights”, which mimics the µ (n) and gives satisfactory estimates on upper bounds, lower
bounds, and asymptotics for smoother number sets such as almost primes, which leads to upper
bounds for primes. However, obtaining lower bounds for primes has proved much more difficult,
thus leaving Goldbach’s and Polignac’s conjectures out of reach. This has been due to the so-called
“parity barrier", where the sieve struggles to distinguish integers with an odd number of prime factors
from integers with an even number of prime factors. Although the parity barrier has been broken for
certain specific sequences, it still remains the fundamental obstacle in the treatment of primes via this
approach of sieve theory.

(II) In the second approach, one quantifies the proportion of integers that are sifted out at each
round of the sieve, as

#{multiples of p up to x that survived the preceding rounds}
#{integers up to x that survived the preceding rounds} .

This means that every integer is sifted out according to its least prime factor, out of a set of
integers whose least prime factors are greater than, or equal to, the least prime factors of the integers
being sifted out at the given round, with the exception of the number 1. This is best illustrated by the
following example.

In the 1st round of the sieve, one quantifies the subset of the multiples of 2 up to 26, as a ratio over
the set of all integers up to 26. That is,

#{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26}
#{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26} .

In the 2nd round, one quantifies the subset of the multiples of 3 that survived the preceding round of
the sieve, as a ratio over the set of all the integers that survived the preceding round of the sieve. That
is,

#{3, 9, 15, 21}
#{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25} .
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In the 3rd round, one quantifies the subset of the multiples of 5 that survived the preceding rounds of
the sieve, as a ratio over the set of all the integers that survived the preceding rounds of the sieve. That
is,

#{5, 25}
#{1, 5, 7, 11, 13, 17, 19, 23, 25} .

Since that completes the sieve, then the subset of integers that survives the sieve is

{1, 7, 11, 13, 17, 19, 23},

which consists of the number 1, and the complete set of primes in the interval [
√

26, 26 ].
The appeal of this approach lies in the fact that every integer is sifted out only once; and therefore,

one does not have the issue of certain integers appearing at multiple rounds of the sieve, which one
has with the first approach, as described above. However, the challenging aspect of this approach is
the difficulty that one has in defining quantitatively the two subsets of integers that survive the sieve
up to the given round. Nevertheless, since at each round of the sieve, the subset of the multiples of p

that survive the preceding rounds consists of the complete set of integers up to x for which p is the
least prime factor; and, the subset of all the integers that survive the preceding rounds contains the
complete set of primes in the interval [

√
x, x ]; then, one is able to define quantitatively the two sets of

integers, at least to the extent where one can determine upper and/or lower bounds.

1.3. Our Results

In the present paper, we take the second approach as outlined above, in order to describe
quantitatively the sieve of Eratosthenes. On the condition that x is sufficiently large; at each round
of the sieving of integers, we define quantitatively both the subset of the multiples of p up to x that
survive the preceding rounds of the sieve and the subset of all the integers up to x that survive the
preceding rounds of the sieve; to the extent where we are then able to determine an upper bound to
the proportion of integers that are sifted out at each round of the sieve. To the best of our knowledge,
we are the first to take this approach for these purposes.

Definition 1 (Additive representation). Let a, b ∈ N, let a ≤ b, and let x be an even number, then we say

that a + b is an additive representation of x, if a + b = x.

Definition 2 (Subtractive representation). Let a, b ∈ N, let a < b, and let k be an even number, then we say

that b − a is a subtractive representation of k, if b − a = k.

We then extend our approach taken in the sieving of integers, to the sieving of representations,
whereby we quantify the subset of the additive representations of x, and the subset of the subtractive
representations of k up to x, that survive the sieve of Eratosthenes. As with the sieving of integers, we
quantify the proportion of representations that are sifted out at each round of the sieve, as

#{representations, containing multiples of p up to x, that survived the preceding rounds}
#{representations, containing integers up to x, that survived the preceding rounds} .

This means that additive representations, and subtractive representations, are sifted out according
to either a or b, depending on whose least prime factor is the smaller (or equal to) of the two. This
allows for every representation that contains at least one multiple of p to be sifted out once only,
while every representation that does not contain multiples of p, survives the sieve. Therefore, upon
completion of the sieve, we have a subset of representations where a = 1 or a prime in the interval
[
√

x, x ], and b is a prime in the interval [
√

x, x ]; with the quantity of representations where a = 1 being
at most one.
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By relating the sieving of representations to the sieving of integers for the same x, we determine
an upper bound to the proportion of additive representations that are sifted out at each round of the
sieve, and an upper bound to the proportion of subtractive representations that are sifted out at each
round of the sieve, on the condition that x is sufficiently large. Following on from the upper bounds,
we then determine a positive lower bound to the subset of additive representations that survive the
sieve, where both a and b are primes in the interval [

√
x, x ], and a positive lower bound to the subset

of subtractive representations that survive the sieve, where both a and b are primes in the interval
[
√

x, x ]. Therefore, we prove the following:

Theorem 1. Every sufficiently large even number is the sum of two primes.

Theorem 2. Every even number is the difference of two primes in infinitely many ways.

Theorem 1 partially addresses question ′(i)′ as posed above; and, to date is the closest theoretical
result to the binary Goldbach conjecture. Theorem 2 fully addresses questions ′(ii)− (iii)′ as posed
above; fully establishes the Twin Prime conjecture; and, to date is the closest theoretical result to the
Polignac conjecture.

2. Notation

N and P : the set of natural numbers and the set of prime numbers respectively.
x and k : even numbers. p and q : prime numbers. pn : the nth prime number. We have pm < pn.
w : a sufficiently large positive integer, not necessarily the same at every occurrence.
rz : the z th integer in the sequence r := {a ∈ N : 2 ∤ a, 3 ∤ a}.
α1, α2, αm, αn, ηn, hn, ln : positive real numbers.
β1, β2, βm, βn, θn, γ1, γ2, γm, γn, νn : non-negative real numbers.

π (a) := |{p : p ≤ a}|.
π [a, b] := |{p : a ≤ p ≤ b}|.
g (x) := |{p : (x − p) ∈ P,

√
x ≤ p ≤ (x − p) ≤ x}|.

πk(x) := |{p : (p + k) ∈ P,
√

x ≤ p ≤ (p + k) ≤ x}|.
πk(x)′ := |{p : (p + k) ∈ P, 2 ≤ p ≤ (p + k) ≤ x}|.

A := {a ∈ N : a ≤ x}.
Ap := {a ∈ A : q ∤ a, q < p}.
Ap := {a ∈ A : p | a}.
Aqp := {a ∈ A : q | a and p | a}.
S
(

A, p
)

:= {a ∈ A : p ∤ a}.
B := {b ∈ N : b ≤ (x − b)}.

Bp := {b ∈ B : q ∤ b and q ∤ (x − b), q < p}.
Bp := {b ∈ B : p | b or p | (x − b)}.

Bqp :=
{

b ∈ B :
[

q | b or q | (x − b)
]

and
[

p | b or p | (x − b)
]}

.

S
(

B, p
)

:= {b ∈ B : p ∤ b and p ∤ (x − b)}.

C :=
{

c ∈ N : (c + k) ≤ x, k ≤ x

2

}

.

C p := {c ∈ C : q ∤ c and q ∤ (c + k), q < p}.
Cp := {c ∈ C : p | c or p | (c + k)}.

Cqp :=
{

c ∈ C :
[

q | c or q | (c + k)
]

and
[

p | c or p | (c + k)
]}

.

S
(

C, p
)

:= {c ∈ C : p ∤ c and p ∤ (c + k)}.

D :=

[

d∧e ∈ N : d ≤ x, k ≤ x

2
, e =

{

2, if (1 + k) ≤ d ≤ (x − k),

1, otherwise,

]

; that is, D is a multiset, with e

being the multiplicity of d.
Dp := [d ∈ D : p | d]. Any other notation used, is defined at the point of use.
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3. Sieve Outline

3.1. Sieving Integers

Let
|Apn

pn | =
αn

pn
· |Apn |, (7)

then
|S
(

Apn , pn

)

| = |Apn | − αn

pn
· |Apn | = |Apn+1 |. (8)

Since | A | = x, then

|Apn+1 | = x · p1 − α1

p1
· p2 − α2

p2
· · · · · pn − αn

pn
. (9)

Let pn ≤√
x, then

|Apn+1 | = π (x)− π
(√

x
)

+ 1, (10)

and therefore
π (x)− π

(√
x
)

+ 1 = x · ∏
pn≤

√
x

pn − αn

pn
. (11)

Empirical data for the sieving of A, as shown in Figure 1, suggest that αn oscillates about 1, before
approaching 0 as pn →√

x. We determine an upper bound to αn, for pn ≤√
x and x ≥ w.

(a) x = L · 108, pn ≤ 1 · 103 (b) x = L · 108, pn ≤ √
x

Figure 1. αn =
|Apn

pn
|

|Apn | · pn, for various x.

3.2. Sieving Additive Representations

Let

|Bpn
pn | =

βn

pn
· |Bpn |, (12)

then

|S
(

Bpn , pn

)

| = |Bpn | − βn

pn
· |Bpn | = |Bpn+1 |. (13)

Since | B | = x

2
, then

|Bpn+1 | = x

2
· p1 − β1

p1
· p2 − β2

p2
· · · · · pn − βn

pn
. (14)

Let pn ≤√
x, then

|Bpn+1 | = g (x) + u, (15)
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where u ≤ 1; and therefore,

g (x) ≥ x

2
· ∏

pn≤
√

x

pn − βn

pn
− 1. (16)

Empirical data for the sieving of B and for that of A, as shown in Figure 2 for pn ≤√
x, suggest

that

|Bpn
pn |

|Bpn | ≈























1 ·
|Apn

pn |
|Apn | , if pn | x,

2 ·
|Apn

pn |
|Apn | , if pn ∤ x,

(17)

which we generalise for pn ≤√
x. Through 17, we determine upper bounds to βn for pn ≤√

x and
x ≥ w. Following on from the upper bounds for βn, we determine a positive lower bound to 16 for
x ≥ w, and thus we prove Theorem 1.

(a) x = 892, 371, 464 (b) x = 892, 371, 480

Figure 2. αn =
|Apn

pn
|

|Apn | · pn (red) and βn =



















1
1
·
|Bpn

pn
|

|Bpn | · pn if pn | x,

1
2
·
|Bpn

pn
|

|Bpn | · pn if pn ∤ x,

(blue).

3.3. Sieving subtractive representations

Let
|C pn

pn | =
γn

pn
· |C pn |, (18)

then
|S
(

C pn , pn

)

| = |C pn | − γn

pn
· |C pn | = |C pn+1 |. (19)

Since | C | = x − k, then

|C pn+1 | = (x − k) · p1 − γ1

p1
· p2 − γ2

p2
· · · · · pn − γn

pn
. (20)

Let pn ≤√
x, then

|C pn+1 | = πk(x) + u, (21)

where u ≤ 1; and therefore,

πk(x) ≥ (x − k) · ∏
pn≤

√
x

pn − γn

pn
− 1. (22)
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Empirical data for the sieving of C and for that of A, as shown in Figure 3 for pn ≤√
x, suggest

that

|C pn
pn |

|C pn | ≈























1 ·
|Apn

pn |
|Apn | , if pn | k,

2 ·
|Apn

pn |
|Apn | , if pn ∤ k,

(23)

which we generalise for pn ≤√
x. Through 23, we determine upper bounds to γn for pn ≤√

x and
x ≥ w. Following on from the upper bounds for γn, we determine a positive lower bound to 22 for
x ≥ w, and thus we prove Theorem 2.

(a) x = 892, 371, 464 and k = 446, 185, 732 (b) x = 892, 371, 464 and k = 9, 699, 690

Figure 3. αn =
|Apn

pn
|

|Apn | · pn (red) and γn =



















1
1
·
|C pn

pn
|

|C pn | · pn if pn | k,

1
2
·
|C pn

pn
|

|C pn | · pn if pn ∤ k,

(blue).

4. Preliminaries

Proposition 1. Let pn ≤√
x. Since Apn

pn consists of the complete set of integers (≤ x) for which pn is the least

prime factor, then due to the Fundamental Theorem of Arithmetic, we have

|Apn
pn | ≡ π [pn, pn] + π

[

pn,
x

pn

]

+ π

[

pn,
x

pn · pn

]

+ π

[

pn+1,
x

pn · pn+1

]

+ · · · , (24)

where π

[

pn,
x

pn · pn

]

+ π

[

pn+1,
x

pn · pn+1

]

+ · · · = 0, if pn >
3
√

x.

Proposition 2. In the following, we describe the sieving process of A by pm. Thus, let

|Apm
pm | =

αm

pm
· |Apm |, (25)

and

|Apm
pn | =

ηn

pn
· |Apm |. (26)

Then, in light of distribution effects at finite range, we have

|Apm
pm pn | ≈

αm

pm
· ηn

pn
· |Apm |, (27)

and

|Apm
pm pn | ≈

ηn

pn
· |Apm

pm | ≈
αm

pm
· |Apm

pn |. (28)
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Therefore, due to 25 we have

|S
(

Apm , pm

)

| = |Apm | − αm

pm
· |Apm |, (29)

and due to 28 we have

|S
(

Apm
pn , pm

)

| ≈ |Apm
pn | −

αm

pm
· |Apm

pn |. (30)

Therefore, due to 26 we have

|Apm+1
pn | ≈ ηn

pn
· |Apm+1 |, (31)

where

lim
|Apm

pm pn |→∞

|Apm+1
pn |

|Apm+1 | =
ηn

pn
. (32)

Proposition 3. Since
|Apn |
| A | ≤ 1

pn
; (33)

and since |Apm
pm pn | → ∞ as |Apn

pn | → ∞; then, in light of Proposition 2, we have

lim
|Apn

pn |→∞

|Apn
pn |

|Apn | =
1
pn

. (34)

Proposition 4. Let pn ≤√
x, then we have

|Apn
pn |

|Apn | =
|Apn

pn |
1 + π

[√
x, x

]

+ |Apn
pn |+ | E |

, (35)

where E is the set of the remaining multiples of the primes in the interval
[

pn+1,
√

x
]

; and therefore, | E | ≥
π
[

pn+1,
√

x
]

. Since x is an even number, then
√

x is non-prime; and therefore, if pn+1 <

√
x, then

π
[

pn+1,
√

x
]

+ π
[√

x, x
]

= π
[

pn+1, x
]

. (36)

If pn+1 >

√
x, then | E | = 0 and pn+1 is the 1st prime after the

√
x; where, the

√
x is non-prime. Therefore; if

pn+1 >

√
x, then π

[√
x, x

]

= π
[

pn+1, x
]

. Therefore; if pn ≤√
x, then

|Apn
pn |

1 + π
[√

x, x
]

+ |Apn
pn |+ | E |

≤
|Apn

pn |
1 + |Apn

pn |+ π
[

pn+1, x
] =

|Apn
pn |

|Apn
pn |+ π

[

pn, x
] , (37)

and therefore

|Apn
pn |

|Apn | ≤
|Apn

pn |
|Apn

pn |+ π
[

pn, x
] . (38)

Proposition 5. Since pn ≤√
x and |Apn | ≥ π

[√
x, x

]

, then

pn

|Apn | ≤
√

x

π
[√

x, x
] ; (39)
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where, due to the Prime Number Theorem, we have

√
x

π
[√

x, x
] ∼ x

1
2

x

log x
− x

1
2

log x
1
2

=
log x

x
1
2 − 2

. (40)

Since

lim
x→∞

log x

x
1
2 − 2

= 0, (41)

then

lim
x→∞

√
x

π
[√

x, x
] = 0, (42)

and therefore

lim
x→∞

pn

|Apn | = 0. (43)

Proposition 6. Let b ∈ N, then we have :















if p | x and p | b, then p | (x − b),

if p ∤ x and p | b, then p ∤ (x − b),

if p ∤ x and p | (x − b), then p ∤ b.

Proposition 7. Let c ∈ N, then we have :















if p | k and p | c, then p | (c + k),

if p ∤ k and p | c, then p ∤ (c + k),

if p ∤ k and p | (c + k), then p ∤ c.

Proposition 8. In the following, we describe the sieving process of B by pm; in relation to the sieving process of

A, also by pm; as outlined in Proposition 2. Thus; let x, pm, and pn, be the same as in Proposition 2; and, in

light of Proposition 6, let

|Bpm
pm | =



















βm

pm
· |Bpm |, if pm | x,

2βm

pm
· |Bpm |, if pm ∤ x,

(44)

and

|Bpm
pn | =



















θn

pn
· |Bpm |, if pn | x,

2θn

pn
· |Bpm |, if pn ∤ x.

(45)

Then, in light of distribution effects at finite range, we have

|Bpm
pm pn | ≈























































βm

pm
· θn

pn
· |Bpm |, if pm | x and pn | x,

βm

pm
· 2θn

pn
· |Bpm |, if pm | x and pn ∤ x,

2βm

pm
· θn

pn
· |Bpm |, if pm ∤ x and pn | x,

2βm

pm
· 2θn

pn
· |Bpm |, if pm ∤ x and pn ∤ x,

(46)
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and

|Bpm
pm pn | ≈























































θn

pn
· |Bpm

pm | ≈
βm

pm
· |Bpm

pn |, if pm | x and pn | x,

2θn

pn
· |Bpm

pm | ≈
βm

pm
· |Bpm

pn |, if pm | x and pn ∤ x,

θn

pn
· |Bpm

pm | ≈
2βm

pm
· |Bpm

pn |, if pm ∤ x and pn | x,

2θn

pn
· |Bpm

pm | ≈
2βm

pm
· |Bpm

pn |, if pm ∤ x and pn ∤ x.

(47)

Therefore, due to 44 we have

|S
(

Bpm , pm

)

| =



















|Bpm | − βm

pm
· |Bpm |, if pm | x,

|Bpm | − 2βm

pm
· |Bpm |, if pm ∤ x,

(48)

and due to 47 we have

|S
(

Bpm
pn , pm

)

| ≈



















|Bpm
pn | −

βm

pm
· |Bpm

pn |, if pm | x,

|Bpm
pn | −

2βm

pm
· |Bpm

pn |, if pm ∤ x.
(49)

Therefore, if

|Bpm
pn |

|Bpm | =
|Apm

pn |
|Apm | ; (50)

then, due to 48 and 49, in conjunction with 29 and 30, we have

|Bpm+1
pn |

|Bpm+1 | ≈
|Apm+1

pn |
|Apm+1 | ; (51)

where,

lim
|Apm

pm pn |→∞, |Bpm
pm pn |→∞

|Apm+1 | · |Bpm+1
pn |

|Apm+1
pn | · |Bpm+1 |

= 1. (52)

Proposition 9. In the following, we describe the sieving process of C by pm; in relation to the sieving process of

A, also by pm; as outlined in Proposition 2. Thus; let x, pm, and pn, be the same as in Proposition 2; and, in

light of Proposition 7, let

|C pm
pm | =















γm

pm
· |C pm |, if pm | k,

2γm

pm
· |C pm |, if pm ∤ k,

(53)

and

|C pm
pn | =















νn

pn
· |C pm |, if pn | k,

2νn

pn
· |C pm |, if pn ∤ k.

(54)
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Then, in light of distribution effects at finite range, we have

|C pm
pm pn | ≈























































γm

pm
· νn

pn
· |C pm |, if pm | k and pn | k,

γm

pm
· 2νn

pn
· |C pm |, if pm | k and pn ∤ k,

2γm

pm
· νn

pn
· |C pm |, if pm ∤ k and pn | k,

2γm

pm
· 2νn

pn
· |C pm |, if pm ∤ k and pn ∤ k,

(55)

and

|C pm
pm pn | ≈























































νn

pn
· |C pm

pm | ≈
γm

pm
· |C pm

pn |, if pm | k and pn | k,

2νn

pn
· |C pm

pm | ≈
γm

pm
· |C pm

pn |, if pm | k and pn ∤ k,

νn

pn
· |C pm

pm | ≈
2γm

pm
· |C pm

pn |, if pm ∤ k and pn | k,

2νn

pn
· |C pm

pm | ≈
2γm

pm
· |C pm

pn |, if pm ∤ k and pn ∤ k.

(56)

Therefore, due to 53 we have

|S
(

C pm , pm

)

| =















|C pm | − γm

pm
· |C pm |, if pm | k,

|C pm | − 2γm

pm
· |C pm |, if pm ∤ k,

(57)

and due to 56 we have

|S
(

C pm
pn , pm

)

| ≈















|C pm
pn | −

γm

pm
· |C pm

pn |, if pm | k,

|C pm
pn | −

2γm

pm
· |C pm

pn |, if pm ∤ k.
(58)

Therefore, if

|C pm
pn |

|C pm | =
|Apm

pn |
|Apm | ; (59)

then, due to 57 and 58, in conjunction with 29 and 30, we have

|C pm+1
pn |

|C pm+1 | ≈
|Apm+1

pn |
|Apm+1 | ; (60)

where,

lim
|Apm

pm pn |→∞, |C pm
pm pn |→∞

|Apm+1 | · |C pm+1
pn |

|Apm+1
pn | · |C pm+1 |

= 1. (61)

5. An Upper Bound on the Sifted Out Integers

In this section, we determine an upper bound to αn, as follows.
Let pn ≤ 3

√
x , then

π

[

pn,
x

pn

]

≥ π

(

x
3
√

x

)

− π
(

3
√

x
)

; (62)
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where, due to the Prime Number Theorem, we have

π

(

x
3
√

x

)

− π
(

3
√

x
)

∼ x
2
3

log x
2
3
− x

1
3

log x
1
3
=

3
2 x

1
3 (x

1
3 − 2)

log x
, (63)

where
3
2 x

1
3 (x

1
3 − 2)

log x
≥ x

1
3

log x
, (64)

for x ≥ w. Since
x

1
3

log x
→ ∞ as x → ∞, then π

[

pn,
x

pn

]

→ ∞ as x → ∞. Therefore, if pn ≤ 3
√

x ; then,

from Proposition 1, we can see that |Apn
pn | → ∞ as x → ∞. Therefore, if pn ≤ 3

√
x and x ≥ w; then, due

to Proposition 3, we have
|Apn

pn |
|Apn | ≤

1
pn

· 1.15. (65)

It remains to determine an upper bound to αn for 3
√

x < pn ≤√
x, which we do as follows.

Let 3
√

x < pn ≤√
x; then, due to Proposition 1, we have

|Apn
pn |

|Apn
pn |+ π

[

pn, x
] ≡

1 + π

[

pn,
x

pn

]

1 + π

[

pn,
x

pn

]

+ π
[

pn, x
]

≤
1 + π

[

pn,
x

pn

]

1 + π
[

pn, x
] , (66)

where

1 + π

[

pn,
x

pn

]

1 + π
[

pn, x
] ≤

1 + π

[

pn,
x

pn

]

+ π
(

pn−2

)

1 + π
[

pn, x
]

+ π
(

pn−2

) =

π

(

x

pn

)

π (x)
, (67)

for x ≥ w. Therefore, if 3
√

x < pn ≤√
x and x ≥ w; then, due to Proposition 4, we have

|Apn
pn |

|Apn | ≤
π

(

x

pn

)

π (x)
, (68)

which we quantify as follows.

Let f (a) :=
π (a)

a
; then

π

(

x

pn

)

π (x)
=

1
pn

·
f

(

x

pn

)

f (x)
. (69)

Since pn ≤√
x, then

f

(

x

pn

)

f (x)
≤ f

(√
x
)

f (x)
. (70)

Due to the Prime Number Theorem, we have

lim
x→∞

f
(√

x
)

f (x)
= 2.00; (71)

and therefore; if x ≥ w, then
f
(√

x
)

f (x)
≤ 2.15. (72)
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Therefore; if 3
√

x < pn ≤√
x and x ≥ w, then

|Apn
pn |

|Apn | ≤
1
pn

· 2.15; (73)

which, in conjunction with 65, holds for pn ≤√
x and x ≥ w.

6. Upper Bounds on the Sifted Out Additive Representations

In this section, we determine upper bounds to βn, as follows.
Let pn ≤√

x and let x be the same for both A and B; then, we have

| B | = 1
2
· | A |; (74)

and, due to Proposition 6, we have

|Bpn | =















1
2
· |Apn |, if pn | x,

1
1
· |Apn |, if pn ∤ x;

(75)

and therefore, we have

|Bpn |
| B | =



















1 · |Apn |
| A | , if pn | x,

2 · |Apn |
| A | , if pn ∤ x.

(76)

Therefore, due to Proposition 8, we have

|Bpn
pn |

|Bpn | ≈























1 ·
|Apn

pn |
|Apn | , if pn | x,

2 ·
|Apn

pn |
|Apn | , if pn ∤ x,

(77)

where pn ≤√
x. We determine an upper bound to 77, as follows.

Let pn ≤√
x and let x ≥ w; then, due to 77 and 73, we have

|Bpn
pn |

|Bpn | ≤



















1 · 2.15
pn

· hn, if pn | x,

2 · 2.15
pn

· hn, if pn ∤ x.
(78)

Since |Bpm
pm pn | → ∞ as |Bpn

pn | → ∞, then hn → 1 as |Bpn
pn | → ∞. If |Apn

pn | ≤ J, where J is a constant
arbitrarily large; then, due to 77 and Proposition 5, we have

lim
x→∞

(

pn

|Bpn | · |B
pn
pn |

)

= lim
x→∞

(

pn

|Apn | · |A
pn
pn |

)

= 0, (79)

where |Bpn
pn | ≤ J. Therefore, if x ≥ w; then, |Bpn

pn | ≥ w such that hn ≤ 1.15, or

pn

|Bpn | · |B
pn
pn | ≤ 0.15. (80)
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Therefore; if pn ≤√
x and x ≥ w, then

|Bpn
pn |

|Bpn | ≤



















1 · 2.15
pn

· 1.15, if pn | x,

2 · 2.15
pn

· 1.15, if pn ∤ x,
(81)

and therefore
|Bpn

pn |
|Bpn | ≤

5
pn

. (82)

Furthermore, due to empirical observations, we have

|Bp1 |
| B | ≤ 1

p1
, (83)

and
|Bp2

p2 |
|Bp2 | ≤

2
p2

+ 2, (84)

and
|Ap3

p3 |
|Ap3 | ≤

1
p3

+ 1. (85)

Then, as with 81, we have
|Bp3

p3 |
|Bp3 | ≤ 2 ·

(

1
p3

+ 1
)

· 1.15 ≤ 3
p3

+ 3, (86)

for x ≥ w.

7. Upper Bounds on the Sifted out Subtractive Representations

In this section, we determine upper bounds to γn, as follows.
Let pn ≤√

x and let x be the same for A, C, and D; then, we have

| C | = 1
2
· | D |; (87)

and, due to Proposition 7, we have

|Cpn | =















1
2
· |Dpn |, if pn | k,

1
1
· |Dpn |, if pn ∤ k;

(88)

and therefore, we have

|Cpn |
| C | =



















1 · |Dpn |
| D | , if pn | k,

2 · |Dpn |
| D | , if pn ∤ k.

(89)

Since
|Dpn |
| D | =

|Apn |
| A | , (90)
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then

|Cpn |
| C | =



















1 · |Apn |
| A | , if pn | k,

2 · |Apn |
| A | , if pn ∤ k.

(91)

Therefore, due to Proposition 9, we have

|C pn
pn |

|C pn | ≈























1 ·
|Apn

pn |
|Apn | , if pn | k,

2 ·
|Apn

pn |
|Apn | , if pn ∤ k,

(92)

where pn ≤√
x. We determine an upper bound to 92, as follows.

Let pn ≤√
x and let x ≥ w; then, due to 92 and 73, we have

|C pn
pn |

|C pn | ≤



















1 · 2.15
pn

· ln, if pn | k,

2 · 2.15
pn

· ln, if pn ∤ k.
(93)

Since |C pm
pm pn | → ∞ as |C pn

pn | → ∞, then ln → 1 as |Bpn
pn | → ∞. If |Apn

pn | ≤ J, where J is a constant
arbitrarily large; then, due to 92 and Proposition 5, we have

lim
x→∞

(

pn

|C pn | · |C
pn
pn |

)

= lim
x→∞

(

pn

|Apn | · |A
pn
pn |

)

= 0, (94)

where |C pn
pn | ≤ 2J. Therefore, if x ≥ w; then, |C pn

pn | ≥ w such that ln ≤ 1.15, or

pn

|C pn | · |C
pn
pn | ≤ 0.15. (95)

Therefore; if pn ≤√
x and x ≥ w, then

|C pn
pn |

|C pn | ≤



















1 · 2.15
pn

· 1.15, if pn | k,

2 · 2.15
pn

· 1.15, if pn ∤ k,
(96)

and therefore
|C pn

pn |
|C pn | ≤

5
pn

. (97)

Furthermore, due to empirical observations, we have

|Cp1 |
| C | ≤ 1

p1
, (98)

and
|C p2

p2 |
|C p2 | ≤

2
p2

+ 2, (99)

and
|Ap3

p3 |
|Ap3 | ≤

1
p3

+ 1. (100)
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Then, as with 96, we have

|C p3
p3 |

|C p3 | ≤ 2 ·
(

1
p3

+ 1
)

· 1.15 ≤ 3
p3

+ 3, (101)

for x ≥ w.

8. Lower Bounds on the Surviving Representations

In this section, we determine lower bounds to 16 and 22, as follows.
Let x ≥ w; then, due to the upper bounds for βn in 82, 83, 84, and 86, we have the following lower

bound for 16:

g (x) ≥ x

2
· p1 − 1

p1
· p2 − 2

p2
· p3 − 3

p3
·

pn≤
√

x

∏
pn=p4

pn − 5
pn

− 6, (102)

which we quantify as follows. Since

pn≤
√

x

∏
pn=p4

pn − 5
pn

≥
pn=p70

∏
pn=p4

pn − 5
pn

·
pn≤

√
x

∏
pn=p71

pn − 6
pn

, (103)

and
p1 − 1

p1
· p2 − 2

p2
· p3 − 3

p3
·

pn=p70

∏
pn=p4

pn − 5
pn

≥ 79
500, 000

, (104)

then

g (x) ≥ x · 79
1, 000, 000

·
pn≤

√
x

∏
pn=p71

pn − 6
pn

− 6. (105)

Since p71 = r118, then
pn≤

√
x

∏
pn=p71

pn − 6
pn

≥
rz≤

√
x

∏
rz=r118

rz − 6
rz

, (106)

and therefore

g (x) ≥ x · 79
1, 000, 000

·
rz≤

√
x

∏
rz=r118

rz − 6
rz

− 6. (107)

Since
rz≤

√
x

∏
rz=r118

rz − 6
rz

≥ r116 · r117

x
, (108)

where r116 = 347 and r117 = 349, then

g (x) ≥ 79 · 347 · 349
1, 000, 000

− 6 ≥ 1. (109)

This completes the proof for Theorem 1.

Let x ≥ w and let k ≤ x

2
; then, due to the upper bounds for γn in 97, 98, 99, and 101, we have the

following lower bound for 22:

πk(x) ≥ x

2
· p1 − 1

p1
· p2 − 2

p2
· p3 − 3

p3
·

pn≤
√

x

∏
pn=p4

pn − 5
pn

− 6. (110)

Therefore, as with 109, we have

πk(x) ≥ 79 · 347 · 349
1, 000, 000

− 6 ≥ 1; (111)
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and therefore, πk(x)′ → ∞ as x → ∞.
This completes the proof for Theorem 2.
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