Animal models of Alzheimer’s disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research, and have greatly enabled the mechanistic understanding of Alzheimer’s disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models are essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models as well as in patients with Alzheimer’s disease, These tools have facilitated our understanding of disease mechanisms, and provided longitudinal monitoring of treatment effect in animal models of Alzheimer’s disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer’s disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes, and discuss outstanding challenges in disease animal models and future outlook in on-chip characterization of imaging biomarkers towards clinical translation.
Keywords:
Subject: Medicine and Pharmacology - Pharmacology and Toxicology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.