Preprint
Article

Graphene Prepared via the Dry Ice in Flames Method and its Purification Using Different Routes: A Comparative Study

Altmetrics

Downloads

382

Views

531

Comments

0

Submitted:

11 January 2022

Posted:

13 January 2022

You are already at the latest version

Alerts
Abstract
Although the dry ice method used to synthesize exfoliated graphite/graphene is little known and used, it has significant advantages over others: it is low cost, simple, and a large quantity of material can be obtained using some inorganic and highly available acids (which can be reused). Despite the above advantages, the main reason for its incipient development is the resulting presence of magnesium oxide in the final product. In the present work, three different treat-ments were tested to remove this remnant using some acid chemical leaching processes, making use of hydrochloric acid, aqua regia, and piranha solution. Based on the experimental evidence, it was found that using aqua regia and combining the leaching process with mechanical milling was the most efficient way of removing such a remnant, the residue being only 0.9 wt.%. This value is low when compared to that obtained with the other acid leaching solutions and purifi-cation process (2.8 - 29.6 wt.%). A mandatory high-energy mechanical milling stage was neces-sary during this treatment, in order to expose and dissolve the highly insoluble oxide without secondary chemical reactions on the graphenes. High-energy mechanical milling is an effective route to exfoliate graphite/graphene, which allows the magnesium oxide to be more susceptible to acid treatment. The obtained surface area was 504 m2g-1; this high value resulting from the in-tense exfoliation can potentiate the use of this material for a wide variety of applications.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated