Preprint
Article

Parameter Estimation of the Macroscopic Fundamental Diagram: A Maximum Likelihood Approach

Altmetrics

Downloads

235

Views

204

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

19 October 2021

Posted:

21 October 2021

You are already at the latest version

Alerts
Abstract
This paper extends the Stochastic Method of Cuts (SMoC) to approximate of the Macroscopic Fundamental Diagram (MFD) of urban networks and uses Maximum Likelihood Estimation (MLE) method to estimate the model parameters based on empirical data from a corridor and 30 cities around the world. For the corridor case, the estimated values are in good agreement with the measured values of the parameters. For the network datasets, the results indicate that the method yields satisfactory parameter estimates and graphical fits for roughly 50\% of the studied networks, where estimations fall within the expected range of the parameter values. The satisfactory estimates are mostly for the datasets which (i) cover a relatively wider range of densities and (ii) the average flow values at different densities are approximately normally distributed similar to the probability density function of the SMoC. The estimated parameter values are compared to the real or expected values and any discrepancies and their potential causes are discussed in depth to identify the challenges in the MFD estimation both analytically and empirically. In particular, we find that the most important issues needing further investigation are: (i) the distribution of loop detectors within the links, (ii) the distribution of loop detectors across the network, and (iii) the treatment of unsignalized intersections and their impact on the block length.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated