Preprint
Article

Magnesium Nanoparticle Synthesis From Powders Via Pulsed Laser Ablation In Liquid For Wearables and Flexible Sensor Technologies

Altmetrics

Downloads

263

Views

323

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 October 2021

Posted:

25 October 2021

You are already at the latest version

Alerts
Abstract
Magnesium nanoparticles of various mean diameters (53 – 239 nm) were synthesized herein via Pulsed Laser Ablation in Liquid (PLAL) from millimeter sized magnesium powders within iso-propyl alcohol. It was observed via a 3x3 full factorial DOE that the processing parameters can control the nanoparticle distribution to produce three size-distribution types (bimodal, skewed and normal). Ablation times of 2, 5, and 25 minutes where investigated. An ablation time of 2 minutes produced a bimodal distribution with the other types seen at higher periods of processing. Mg nanoparticle UV-Vis absorbance at 204 nm increased linearly with increasing ablation time, indicating an increase in nanoparticle count. The colloidal density (mg/ml) generally increased with increasing nanoparticle mean diameter as noted via increasing UV-vis absorbance. High la-ser scan speeds (within the studied range of 3000 - 3500 mm/s) tend to increase the nanoparticle count/yield. For the first time, the effect of scan speed on colloidal density, UV-vis absorbance and nanoparticle diameter from metallic powder ablation was investigated and is reported herein. The nanoparticles formed dendritic structures after being drop cast on aluminum foil as observed via FESEM analysis. Dynamic light scattering was used to measure the size of the nanoparticles. Magnesium nanoparticles have promising use in the fabrication of wearables, such as in conductive tracks or battery electrodes, owing to their low heat capacity, high melting point and bio-compatibility.
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated