Preprint
Article

Full 360∘ Terahertz Dynamic Phase Modulation Based on Doubly Resonant Graphene-Metal Hybrid Metasurfaces

Altmetrics

Downloads

156

Views

195

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

27 October 2021

Posted:

28 October 2021

You are already at the latest version

Alerts
Abstract
Dynamic phase modulation is vital for tunable focusing, beaming, polarization conversion and holography. However, it remains challenging to achieve full 360∘ dynamic phase modulation while maintaining high reflectance or transmittance based on metamaterials or metasurfaces in the terahertz regime. Here we propose a doubly resonant graphene-metal hybrid metasurface to address this challenge. Simulation results show that by varying the graphene Fermi energy, the proposed metasurface with two shifting resonances is capable to provide dynamic phase modulation covering a range of 361∘ while maintaining relatively high reflectance above 20% at 1.05 THz. Based on the phase profile design, dynamically tunable beam steering and focusing are numerically demonstrated. We expect this work will advance the engineering of graphene metasurfaces for the dynamic manipulation of terahertz waves.
Keywords: 
Subject: Physical Sciences  -   Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated