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In this paper, a century-old problem is solved; namely, to find a unified analytic description of the
non-uniform distribution of mean velocity across the entire domain of turbulent flow for all Reynolds
numbers within the framework of the Prandtl mixing length theory. This study obtains a closed
form solution of the mean velocity profile of plane turbulent flow for the Prandtl theory, and as well
an approximate analytical solution for the van Driest mixing length theory. The profiles of several
useful quantities are given based the closed form solution, such as turbulent viscosity, Reynolds
turbulent stress, Kolmogorov’s scaling law, and energy dissipation density. The investigation shows
that the energy dissipation density at the surface is finite, whereas Landau’s energy dissipation
density is infinite. Strictly speaking, the closed form solution reveals that the universality of the
turbulent velocity logarithmic profile no longer holds, but the von Kármán constant is still universal.
Furthermore, a new formulation of the resistance coefficient of turbulent flow in pipes is formulated
in implicit form.
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I. INTRODUCTION

The theory of the turbulence boundary layer dates to
the beginning of the 20th century. In 1904, Prandtl [1]
proposed that the high Reynolds of plane flow produces
a very thin boundary layer at the wall that exhibits ba-
sically non-viscous motion; however, the viscous effect
within the boundary layer cannot be ignored. In 1908,
Blasius [2] obtained a complete description of the laminar
boundary layer, which resulted in the classical laminar
boundary-layer theory. However, almost all boundary-
layer movements in nature are turbulent rather than lam-
inar [3–13, 23], predicting the turbulent mean velocity
profile and related quantities are of importance, which
have been investigated extensively by [12, 13] from per-
spectives of the Lie symmetry.

FIG. 1: Plane turbulent flow along an unbounded plane
boundary surface, where ρ is flow mass density, µ is dynamical
viscosity and u is flow velocity.

We consider here a plane-parallel turbulent flow along
an unbounded smooth plane surface (wall) as shown in
Fig.1, and take the direction of the flow as the x axis
and the plane of the surface as the xz plane, so y is the
direction orthogonal to the surface. Assuming that the
turbulent flow is steady with constant pressure along the
x axis, the y and z components of the mean velocity are
zero, and all of the quantities depend only on y. In the
following, we only need to study the upper flow due to

the symmetry of the problem.
The Reynolds-averaged Navier-Stokes equation of the

plane-parallel turbulence is reduced to µd
2ū
dy2 +

dτ ′
xy

dy = 0,
where µ is the dynamical viscosity, ū is the mean velocity,
and τ ′xy = −ρu′v′ is the Reynolds stress.

Under boundary conditions, i.e., y = 0 : ū = 0, u′ =
0, v′ = 0 and µdūdy = τw, the above equation can be
integrated to

µ
dū

dy
− ρu′v′ = τw, (1)

where τw is the wall friction force on a unit area of the
surface. This force is clearly in the x direction. The
quantity τw is the constant flux of the x component of
momentum transmitted by the fluid to the surface per
unit time. The first term on the left-hand side of E-
q. 1 represents the effect of viscosity on the mean flow,
whereas the second term is the Reynolds stress. In tur-
bulent flow located some distance away from a wall, the
Reynolds stress is of considerably greater magnitude than
the viscous stress; however, the role of viscous stress in-
creases as the distance to a smooth wall decreases until
finally, at the wall, viscosity predominates.

According to the Prandtl mixing length theory [5], the
Reynolds stress is proposed to be τ ′xy = ρ`2|dūdy |

dū
dy , where

the mass density is ρ, the mixing length is constructed by
dimensional arguments as ` = κy, and κ is a numerical
constant, namely, the von Kármán constant. Hence, Eq.
1 becomes µdūdy+ρ(κy)2|dūdy |

dū
dy = τw, namely,

dū

dy
<0 : µ

dū

dy
− ρ(κy)2

(
dū

dy

)2

= τw, (2)

dū

dy
>0 : µ

dū

dy
+ ρ(κy)2

(
dū

dy

)2

= τw, (3)
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and the boundary condition is

y = 0 : ū = 0. (4)

So far, no complete solutions have been obtained for
either Eq. 2 or Eq. 3. Instead, asymptotic solutions have
been constructed in two different regions (or sub-layers)
[8] .

In the inertial sub-layer, the first terms of Eq. 2 and

Eq. 3 are neglected, leading to ρ(κy)2
(
dū
dy

)2

= τw, the
solution of which is a well-known Prandtl logarithmic
law,

ū

uτ
=

1

κ
log(

yū

ν
) + α− 1

κ
logα, (5)

where uτ =
√
τw/ρ and ν = µ/ρ.

According to Nikuradse’s famous experiments [7], data
fitting gives κ = 0.4 and α = 11.5; hence, the Prandtl
log-law is

ū

uτ
= 5.75 log(

yū

ν
) + 5.5 (6)

This expression becomes infinite at the boundary y = 0
and is inapplicable at very small distances y from the sur-
face, since the effect of viscosity near the surface becomes
non-negligible [9] .

To fix the singularity problem, traditionally a viscous
sub-layer is introduced in which the viscosity of the fluid
begins to be important. The second terms of Eqs. 2 and
3 can be neglected, leading to µdūdy = τw, the solution of
which is the Prandtl linear law: ū = τwy/µ.

After obtaining these two sub-layer solutions, combin-
ing them into one segmental solution as follows:

u+ = η + (5.394− η + 2.5 ln η)H(η − 5.394), (7)

where H(...) is the Heaviside step function, the wall fric-
tion velocity u+ = ū

uτ
, and the characteristic wall coor-

dinate η = yuτ
ν (note: η is denoted as y+ in some pub-

lications). The wall friction velocity is the chracteristic
velocity for turbulent flows at a given wall shear stress.

Mathematically speaking, the above two segmental so-
lutions, including linear and log-law solutions, are in-
complete, because they are not whole domain solutions.
Rather, it is a local solution of the matching area between
the inertial sub-layer and viscous sub-layer of turbulence.
Between the inertial region and viscous sub-layer, there
is an intermediate region whose empirical solution has
not been obtained [8–10, 14, 15] .

Finding a unified analytic description of the non-
uniform distribution of mean velocity and turbulence in-
tensities across the entire domain of turbulent flow for
all Reynolds numbers is an open problem dating back to
Prandtl’s pioneering work in 1904 [10, 14, 15] .

In this paper, we will focus on the above-mentioned
open problems, and find its exact solution and propose a
modified approximate analytical solution.

II. AN EXACT CLOSED FORM SOLUTION BY
RIGOROUS MATHEMATICS

To find a singularity-free and consistent solution valid
in the whole domain of y, we return to the complete gov-
erning equations, Eqs. 2 and 3, and work to find their
solutions without any approximations, as in the preced-
ing section. We find the exact solutions for both Eqs. 2
and 3, but the solution of Eq. 2 is not physically possible
since two terms of the solution are infinite at y = 0. The
only physically possible equation is Eq. 3, which can be
rewritten as

du+

dη
+ κ2η2

(
du+

dη

)2

= 1, (8)

together with the boundary condition

η = 0 : u+ = 0. (9)

From Eq.8, we can get du+

dη =
−1∓
√

1+4κ2η2

2κ2η2 , hence we
have two solutions of Eq. 8, namely

u+ =


∫ −1−

√
1+4κ2η2

2κ2η2 dη = 1
2κ2η −

∫ √1+4κ2η2

2κ2η2 dη,

∫ −1+
√

1+4κ2η2

2κ2η2 dη = 1
2κ2η +

∫ √1+4κ2η2

2κ2η2 dη.

(10)
Introducing a transformation

2κη = sinh ξ (11)

hence
√

1 + 4κ2η2 = cosh ξ, and coth ξ =

√
1+4κ2η2

2κη ,
as well the inversion ξ = sinh−1(2κη) = ln(2κη +√

1 + 4κ2η2), and derivative

dη =
cosh ξ

2κ
dx. (12)

Therefore, the integration can be obtained as follows∫ √
1 + 4κ2η2

2κ2η2
dη

=
1

κ

∫
(
cosh ξ

sinh ξ
)2dξ =

1

κ
(ξ − coth ξ)

=
1

κ
ln(2κη +

√
1 + 4κ2η2)−

√
1 + 4κ2η2

2κ2η
. (13)

Substitute the integration in Eq. 13 into the first of
Eq.10, we have one solution

u+ =
1

κ
ln(2κη +

√
1 + 4κ2η2)

− 2η

−1 +
√

1 + 4κ2η2
+ C, (14)

This solution is singular solution because of the singu-
larity of 2η

−1+
√

1+4κ2η2
at η → 0, we can not use it as a

solution.
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After carefully checking, the exact closed form and
singularity-free solution of Eq.8 is obtained as

u+ =
1

κ
ln(2κη +

√
1 + 4κ2η2)

− 2η

1 +
√

1 + 4κ2η2
+ C, (15)

where C is integration constant that can be determined
by the boundary condition in Eq. 9.

The solution in Eq.15 is singularity free be-
cause of the cancellation of singularity of the term

limη→0

(
2η

1+
√

1+4κ2η2

)
= 0, which leads to the limit

limη→0 u
+ = C. Applying the boundary condition in Eq.

9 gives C = 0. Finally, the exact closed form solution of
Eq. 8 is found as follows

u+ =
1

κ
ln(2κη +

√
1 + 4κ2η2)

− 2η

1 +
√

1 + 4κ2η2
. (16)

and or in a more compact form

u+ =
1

κ
ln(2`+ +

√
1 + 4(`+)2)

− 1

κ

2`+

1 +
√

1 + 4(`+)2
. (17)

where `+ = κη.
Strictly speaking, the solution in Eq. 16 reveals that

the velocity profile of plane-turbulent flow is not logarith-
mic as stated in [14], owing to the exist of the 2nd term
”− 2η

1+
√

1+4κ2η2
”. Roughly speaking, the logarithmic law

of the turbulent velocity profile can still be approximately
maintained for very large η. Similarly,close to the bound-
ary surface, the velocity profile is not linear of distance
to the wall as well, because 2η

1+
√

1+4κ2η2
6= 2κη.

The singularity-free solution in Eq.16 is valid for the
whole domain of η ∈ [0,∞]. The only unknown in the
solution is the von Kármán constant κ, which could be
determined by data fitting from the experiments [7] to
be κ ≈ 0.4, confirming that the von Kármán constant is
still a universal constant.

Due to the identity of hyperbolic arcsine sinh−1 x =
ln(x+

√
1 + x2), x ∈ (−∞,∞), the closed form solution

can also be expressed as follows

u+ =
1

κ
sinh−1(2κη)− 2η

1 +
√

1 + 4κ2η2
. (18)

III. VALIDATION STUDIES, DISCUSSIONS
AND PERSPECTIVES

To visualize the difference between the segmental so-
lution and the closed form solution, Eqs. 7 and 16 are
depicted in Fig. 2.

FIG. 2: The u+ − log η curve. The segmental solution in Eq.
7 is represented by the blue dashline, and the closed form
solution in Eq. 16 is represented by the red line. The plot
indicates that the mean velocity of the Prandtl solution is
larger than the velocity obtained by the closed form solution
as a result of neglecting the viscosity in Prandtl’s solution.

For further validation, a comparison between the
closed form solution in Eq. 16 and direct numerical sim-
ulation (DNS) solution [15, 16] is depicted in Fig. 3

FIG. 3: Comparisons: the closed form solution, the Prandtl
solution, van Driest mixing length theory [18], the direct nu-
merical simulation (DNS) solution [15, 16].

Although we successfully obtained the closed form so-
lution of plane turbulent flow based on the Prandtl mix-
ing length model `+ = κη, where `+ = `uτ/ν, unfortu-
nately, Fig. 3 shows that the closed form solution does
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not perfectly agree with the DNS solution [15, 16] for a
smooth wall.

It is worth to mention that the above disagreement is
caused by the Prandtl mixing length theory and nothing
to do with the mathematical rigorous treatment of the
Eq.(8) and its closed form solution. Therefore, if we con-
sider the DNS solution as a high-performance solution, to
fix the mess we must modify the Prandtl mixing length
model to make the solution as close to the DNS solution
as possible.

IV. THE VAN DRIEST MODIFICATION OF
THE PRANDTL MIXING LENGTH THEORY

Regarding the modification, we consider an infinite flat
plate undergoing simple harmonic oscillation parallel to
the plate in an infinite fluid. According to Stokes [17],
the amplitude of the motion diminishes with increasing
distance from the surface (wall) as a consequence of the
factor exp(−y/A), where A is a constant depending the
frequency of oscillation of the plate and kinematic vis-
cosity ν of the fluid. Hence, van Driest [18] pointed out
that when the plate is fixed and the fluid oscillates rel-
ative to the plate, the factor [1 − exp(−y/A)] must be
applied to the fluid oscillation to obtain the damping ef-
fect on the wall. Furthermore, van Driest believed that
fully developed turbulent motion occurs only beyond a
distance sufficiently remote from the wall, and eddies are
not damped by the nearness of the wall. Indeed, near a
wall, the damping factor is [1−exp(−y/A)] for each mean
velocity fluctuation, and the Reynolds stress should be
modified to become

τ ′xy = ρκ2y2(
dū

dy
)2[1− exp(− y

A
)]2

= ρu2
τκ

2η2(
du+

dη
)2[1− exp(− η

A+
)]2, (19)

in order to take into account the mean motion all the
way to a smooth wall, where κ ' 0.4, A+ = uτA

ν ' 26.
With the van Driest mixing length theory, Eq. 8 should

be modified to the following:

du+

dη
+ κ2η2[1− exp(− η

A+
]2
(
du+

dη

)2

= 1, (20)

whose solution can be expressed in an integration [18]

u+ =

∫
2

1 +
√

1 + 4κ2η2[1− exp(−η/A+)]2
dη, (21)

which unfortunately has no analytical solution. Howev-
er, we can solve it numerically. For easy application, an
approximated analytical solution can be proposed as fol-
lows

u+ ≈ 1

κ
ln
[
2κηϕ+

√
1 + 4κ2η2ϕ2

]
+

3.49ηϕ

1 +
√

1 + 4κ2η2ϕ2
, (22)

where ϕ = 1−exp(−η/B+) is called the van Driest damp-
ing function, and B+ = 9. The above expression can also
be written in a more compact form

u+ ≈ 1

κ
ln(2`+ϕ+

√
1 + 4(`+ϕ)2)

+
1

κ

8.725`+ϕ

1 +
√

1 + 4(`+ϕ)2
. (23)

The solution of Eq. 21 and Eq. 22 are depicted in Fig.
3, which shows that both numerical and approximate an-
alytical solution of the van Driest mixing length theory
agree well with the DNS solution.

V. SOME QUALITIES CALCULATED FROM
THE CLOSED FORM SOLUTION

With the obtained closed form solution in Eq. 16, we
can calculate some useful quantities, as follows:

(1) The turbulent viscosity is νT = (κy)2 dū
dy =

νκ2η2 du+

dη , where du+

dη =
−1+
√

1+4κ2η2

2κ2η2 = 2

1+
√

1+4κ2η2
;

hence,

νT =
1

2
ν(−1 +

√
1 + 4κ2η2). (24)

This relation reveals that the turbulent viscosity is not
constant but rather increases with η. It is depicted in
Fig. 4.

FIG. 4: The turbulent viscosity ratio, the van Driest turbulent
viscosity [18] is larger than both the closed form solution’s and
Prandtl’s

.

(2) The Reynolds stress is given by

τ ′xy = ρu2
τκ

2η2(
du+

dη
)2 =

4ρu2
τκ

2η2

(1 +
√

1 + 4κ2η2)2
. (25)
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The Reynolds stress ratio τ ′
xy

ρu2
τ
of the segmental solution

and the closed form solution is depicted in Fig. 5.

FIG. 5: The Reynolds stress ratio
τ ′xy
ρu2
τ
, generally speaking, the

Reynolds stress calculated from the closed form solution in-
creases with the distance from the surface before it becomes a
constant, but the segmental solution gives constant Reynolds
stress

τ ′xy
ρu2
τ
= 1 for all η.

(3) According to Landau [9], the mean energy flux den-
sity is < q >= ūτw, and the energy dissipation density
in the turbulent flow is

ε =
1

ρ

d < q >

dy
=

1

ν
(
τw
ρ

)2 du
+

dη
=
u4
τ

ν

du+

dη

=
u4
τ

ν

2

1 +
√

1 + 4κ2η2
, (26)

which gives limη→0 ε =
u4
τ

ν , i.e., a power law u4
τ ; in con-

trast, Landau’s energy dissipation density [9], εLandau =

( τwρ )3/2 1
κy =

u4
τ

ν
1
κη , is infinite at the surface η = 0, indi-

cating that maintaining turbulent flow requires supplying
an infinite energy source, which is physically impossible.
Our energy dissipation density and Landau’s are depicted
in Fig. 6.

(4) According to Kolmogorov [19–22], we have E(k) =
1.5ε2/3k−5/3, namely,

E(k) = 1.5ν−2/3k−5/3u8/3
τ

(
2

1 +
√

1 + 4κ2η2

)2/3

,

(27)

where E(k) is the kinetic energy per unit mass of fluid in
eddies with wave number k. Hence, at the surface η = 0,
we have E(k)η=0 = 1.5u

8/3
τ k−5/3ν−2/3, which is depicted

in Fig. 7.
Figure 7 shows that the turbulent energy dissipation

is mainly concentrated in a narrow region close to the
boundary surface and decays rapidly away from the sur-
face.

FIG. 6: The energy dissipation density ratio εν
u4
τ
decreases to

null rapidly as η increases away from the surface.

FIG. 7: Kolmogorov’s law: Eq. 16 (in red) and van Driest
[18] (in blue).

VI. APPLICATION TO THE FRICTION OF
CIRCULAR PIPES

As an application of the solution in Eq. 16, let us now
apply Eq. 16 to turbulent flow in a pipe with length l
and radius a. The area near the walls of the pipe may
be approximately regarded as a plane, and the velocity
profile must be given by Eq. 16. The mean velocity ū of
the flow in the pipe is calculated by ū = Q/(ρπa2), where
Q is the volume of fluid that passes through a cross-
section of the pipe per unit time divided by the cross-
section area. Since the frictional force per unit area of
the wall is τw = ρu2

τ , the total frictional force is 2πalρu2
τ .

Assuming the pressure gradient ∆p/l maintains the flow,
the force on the cross-section is πa2∆p. Equating the two
forces, namely πa2∆p = 2πalρu2

τ , leads to flow pressure
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gradient ∆p/l = 2ρu2
τ/a.

We must point out that the obtained closed form so-
lution of Eq. 16 is valid for turbulent flow with no pres-
sure gradient, namely, d

dy (p+ ρv′2) = 0, integrating over
the boundary-layer thickness delivers p + ρv′2 = pw, if
the outer flow is assumed to be free from turbulence,
in which pw is flow pressure at the wall. In turbulent
boundary layers therefore it is not the pressure p which
is constant over the boundary layer, but rather the ex-
pression p+ρv′2, since the fluctuations vanish at the wall
and at the outer edge [8]. Therefore ∆p/l = 2ρu2

τ/a 6= 0,
we can still use the exact solution to the pipe because
the shear stress near the wall is approximately equal to
the wall stress [18].

The dependence of the resistance coefficient is de-
fined as λ = 2a∆p/l

(1/2)ρū2 = 2a
2ρu2

τ

a /(ρū2/2) = 8(uτ/ū)2 =

8/(u+)2, which gives

u+ =

√
8

λ
. (28)

The dimensionless Reynolds number is defined as Re =
2aū/ν = (2auτ/ν)u+, hence η|y=a = auτ/ν =
a(ū/uτ )/ν = Re/(2u+) and 2κη|y=a = κRe/u+. Ap-
plying the Eq.28 into the above relation, and leads to

2κη|y=a = κRe

√
λ

8
. (29)

The dependence of the resistance coefficient on the di-
mensionless Reynolds Re number is given in implicit form
by the equation

1√
λ

=
1

κ
√

8
ln(κRe

√
λ

8
+

√
1 +

κ2Re2λ

8
)

− Re
√
λ

8

1

1 +
√

1 + κ2Re2λ/8
. (30)

where a is the pipe radius, and ∆p/l is the pressure gra-
dient. If we set κ = 0.4, we have

1√
λ

= − Re
√
λ

8
(

1 +
√

1 + 0.02λRe2
)

+0.88 ln
(

0.14Re
√
λ+

√
1 + 0.02λRe2

)
. (31)

Eq. 31 and the Prandtl log-law, 1/
√
λ = 2 log(Re

√
λ)−

0.8, are depicted in Fig. 8.

VII. CONCLUSIONS

To the best of the author’s knowledge, the solution in
Eq. 16 is the first closed form solution of plane turbulent
flow ever be obtained in the context of rigorous mathe-
matics. The approximate analytical solution in Eq.22 is
also proposed for the first time for the van Driest mod-
el. The studies in the paper may help to have a better
understanding of turbulence phenomena [23, 24] .

FIG. 8: Pipe resistance coefficient. The Prandtl log-law is
represented by a dotted line, and Eq. 31 is represented by a
solid line. The resistance coefficient derived from Eq. 31 is
higher than that derived from the Prandtl log-law since the
closed form solution includes the viscous influence, whereas
the Prandtl log-law does not.
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