Preprint
Review

Trend Review Related To Defects Detection from Fruits and Vegetables

Altmetrics

Downloads

808

Views

487

Comments

0

Submitted:

30 October 2021

Posted:

02 November 2021

You are already at the latest version

Alerts
Abstract
Defect detection and identification from fruits and vegetables are particularly challenging for Indian agriculture. Defect Detection is a process to identify the defects or damages in vegetables and fruits, based on the shapes, colors and textures. The local market finds it difficult to cope with the defects and other infections in fruits and vegetables as quality evaluations and classification of vegetables and fruits have become tedious process. Recently, several approaches based on Image processing, Machine Learning and Artificial Intelligence methods have been proposed for the purpose of defect detection. On the basis of classifying the types of defects, related pathogens, and physical and morphological characteristics descriptors, we review the different approaches based on a corpus of 57 articles between 2016 and 2021. In the process of describing the defect analysis, steps from the target articles, algorithms, and methods including qualitative and quantitative evaluation are mainly summarized. The aim of this current review work is to present-day novel images and collects recent defective area calculation methods to detect surface defects of fruits and vegetables using RGB images and to classify whether the fruit is defected or fresh. A rigorous evaluation of many new algorithms provided for quality assurance by researcher’s probes of vegetables and fruits have been conducted in this work. This review work conveys that using the recent identification features will help to decrease the disadvantages in fruit storeroom owing to storage of the affected vegetables and fruits, ie. Preventing the spread of defects and other infections from the infected fruits and vegetables to the fresh ones.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated