Preprint
Article

Comparison of Different Image Data Augmentation Approaches

Altmetrics

Downloads

219

Views

213

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

27 October 2021

Posted:

02 November 2021

You are already at the latest version

Alerts
Abstract
Convolutional Neural Networks (CNNs) have gained prominence in the research literature on image classification over the last decade. One shortcoming of CNNs, however, is their lack of generalizability and tendency to overfit when presented with small training sets. Augmentation directly confronts this problem by generating new data points providing additional information. In this paper, we investigate the performance of more than ten different sets of data augmentation methods, with two novel approaches proposed here: one based on the Discrete Wavelet Transform and the other on the Constant-Q Gabor transform. Pretrained ResNet50 networks are finetuned on each augmentation method. Combinations of these networks are evaluated and compared across three benchmark data sets of images representing diverse problems and collected by instruments that capture information at different scales: a virus data set, a bark data set, and a LIGO glitches data set. Experiments demonstrate the superiority of this approach. The best ensemble proposed in this work achieves state-of-the-art performance across all three data sets. This result shows that varying data augmentation is a feasible way for building an ensemble of classifiers for image classification (code available at https://github.com/LorisNanni).
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated