Preprint
Article

Analysis of the Effects of Lockdown on Staff and Students at Universities Using Natural Language Processing Techniques: Case Study of Spain and Colombia

Altmetrics

Downloads

285

Views

228

Comments

0

Submitted:

01 November 2021

Posted:

03 November 2021

You are already at the latest version

Alerts
Abstract
The review of previous works shows this study is the first attempt to analyse the lockdown effect using Natural Language Processing Techniques, particularly sentiment analysis methods applied at large scale. On the other hand, it is also the first of its kind to analyse the impact of COVID 19 on the university community jointly on staff and students and with a multi-country perspective. The main overall findings of this work show that the most often related words were family, anxiety, house and life. On another front, it has also been shown that staff have a slightly less negative perception of the consequences of COVID in their daily life. We have used artificial intelligence models like swivel embedding and the Multilayer Perceptron, as classification algorithms. The performance reached in terms of accuracy metric are 88.8% and 88.5%, for student and staff respectively. The main conclusion of our study is that higher education institutions and policymakers around the world may benefit from these findings while formulating policy recommendations and strategies to support students during this and any future pandemics.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated