Preprint
Case Report

Developing Verification and Optimization Models for Corona Discharge Suppression in High Voltage AC and DC Capacitor Banks

Altmetrics

Downloads

326

Views

192

Comments

0

This version is not peer-reviewed

Submitted:

02 November 2021

Posted:

04 November 2021

You are already at the latest version

Alerts
Abstract
Capacitor banks are widely used in current electrical transmission systems in order to improve power quality and increase efficiency. Utilizing high voltage components such as, shunt capacitors in the power grid imposes new challenges to the system which are required to be addressed. One of these challenges is corona discharges that can have negative impacts on capacitor banks such as power loss, insulator erosion followed by equipment failure, and radio interference. Although previous studies have almost exclusively focused on optimization of corona suppression rings for transformers and transmission lines, no specific studies have conducted regarding high voltage capacitor banks. This paper presents a novel study concerning verification and development of corona discharge suppression models on AC and DC capacitor banks with two different voltage levels. The employed method is based on the Maxwell’s equations and finite element method (FEM) which is implemented with the help of COMSOL Multiphysics© software. Results have verified the necessity of suppression methods as well as the efficiency of proposed solutions. Corona inception voltage levels are identified and effective factors on its appearance are reviewed. Analyses of proposed solutions have shown significant improvements in optimization of corona suppression methods as well as enhancement of maintenance maneuverability.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated