Clinical evidence has shown that bacterial infections are more difficult to eradicate when form-ing a biofilm aggregate than when are produced by bacteria in planktonic form. Therefore, com-pounds that inhibit biofilm formation could be used against severe infections. It has been re-ported that bromo 2-(5H) furanones inhibited biofilm formation by their anti-quorum sensing properties. To determine if the 2-(5H) furanone moiety is essential to induce inhibition of biofilm formation, we evaluated ten halogen 2-(5H) furanones derivates previously synthesized. Besides evaluating the inhibition of biofilm formation, we assessed pyocyanin production, swarming motility, and transcription of essential QS genes: rsaL, rhlA, pqsA and phz1 genes. Our results showed that although three bromo-furan-2(5H)-one-type derivatives (A1-A3) and two bromo-4-(phenylamino)-furan-2(5H)-one-type compounds (B2 and B6) inhibited the biofilm formation in both P. aeruginosa PA14 (reference) and PA64 (drug-resistant) strains only the furanones A1-A3 were efficient to inhibit QSS.
Keywords:
Subject: Chemistry and Materials Science - Medicinal Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.