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Abstract 

 

In this paper we study solutions and drift homogenization for a class of viscous lake 

equations by using the method of semigroups of bounded operators. Suppose that the initial value  

,),( 00 Uut  i.e., )( 00 tuu = for some Hölder continuous function u on  T,0 with smooth 

function value 
2

1)()( 2 DLtu satisfying )(0 jiuij = and )(xb  ).(C
 
Then the 

initial value problem (2) for viscous lake equations has a unique smooth local strong solution. 

Using this result we study the drift homogenization for three-dimensional stationary Stokes 

equation in the usual sense ).(2 bDL  
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（1）Introduction 

 

The viscous lake equations considered in this paper have the following equations (see the 

formula (1.3）in [17]) 

 






=

=+++

xbudiv

TtxpbuAubudivbu bt

,0)(

,0(,,0)()()(




               （1）                                                                               

for ( )xt, ∈ (0, T   with 
3R , a bounded domain with smooth boundary  of class 

,3C µ > 0 represents the eddy viscosity coefficient, ),,(( 1 xtuuu  = )),(),,( 32 xtuxtu 
 stands 

for the three-dimensional fluid velocity, ),( xtpp =  is the pressure. Moreover, the depth )(xb  

is a given function. We assume that the boundary is the only place where the depth can vanish, 
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namely: there is a positive constant M such that 0 < Mxb )( in .  bA is a viscous second 

order operator depending on b which can satisfy the two expressions 

           ),)(2)((2)()( IbdivbDdivAi b •+•−=•    )()()( •−=• bAii b   

where I is the 33 identity matrix and 2/))(()( tD •+•=•  is the deformation tensor. 

The equation (1) shows that the system does not describe incompressible flow, it is a constraint 

that plays a role similar to that played by the incompressibility condition for the incompressible 

Navier–Stokes system. We do not have an existence result concerning the solution of viscous 

shallow water equations with viscosity term given by )(i  until now. 

     We consider in this paper the well posedness of system (1)- )(ii with initial and boundary 

conditions which is given as follows 















=

=

=

=+−•+

=

xxtu

xuu

xbudiv

Tttxpuuuu

tt

t

,0),(

,

,0)(

,(,,0)(

0

0

0







 

                         (2)                                             

The existence，uniqueness and regularity properties of solutions for the viscous lake equations are 

extensively studied. There is an extensive literature on the solvability of the initial value problem 

for viscous lake equations. The terms and symbols in this paper are the same as [18]. For some 

narratives and background, please refer to [18]. 

 In case when ( )xb  is a constant, system (2) becomes similar to the classical 3D 

incompressible Navier-Stokes equations with the external force 0=f as follows 

      

( 
















=

=

=•

•−−=




=



xuu

Tttu

divuu

Tttxuupu
t

u

tt ,

,(,0

0

,,,)(

0

0

0

0                                (3) 

 

Let )(2 L  be the Hilbert space of real vector functions in )(2 L . That is 

                )3,2,1)((),,,(,:)( 2

321

3

2 ==→= iLuuuuuRuL i .         

For ),(),,(),,,( 2321321 == Lvvvvuuuu
 
we define the norm and the inner 

                  ,)( 2
1

2
2

2

)(

3

1)( = =
Li iL

uu ),(),(
3

1 ii i vuvu  =
=  

then )(2 L is also a Hilbert space. The set of all real vector functions u such that div bu =0 
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and )(0  Cu is denoted by ).(,0 

bC
 
Let )(2 bDL  be the closure of )(,0 

bC in  

).(2 L  The set of all real vector functions u such that div u =0 and )(0  Cu is denoted 

by ).(,0 

C
 
Let )(2 DL  be the closure of )(,0 

C in ).(2 L In the case when b is a 

constant ).()( 22 = DLbDL  Similarly to p.270 in [4] we can prove that if )( Cu  then  

       )(2 bDLu if and only if div bu =0 in   and 0=nu
 
on  .         (4)              

(see lemma 1) We will see in lemma 7 that if )( Cb then  

               

       )()( ,0,0 bCC   ),(2 L
 
  ),()()()( 2,0

222 = WLbDLDL   

and                

,
)()()( 222 

•=•=•
LbDLDL  

           

.))(()())(()()( 22222

⊥⊥ == bDLbDLDLDLL
 

From [4] and [9] we have  )(;))(( 2,1

2 = ⊥ WhhDL and  ⊥))(( 2bDL  

( ) .; 2,1  Whhb
 

(see lemma 2) Let P  be the orthogonal projection from )(2 L  onto 

).(2 bDL = PA is called the Stokes operator. Since hbp = has a solution )(2,1 Wh  

for ).( Cb By applying P  to the first equation of (3) and taking account of the other 

equations , we are let the following abstract initial value problem, .Pr II      

  ( 









=

+=

= xuu

TttFuuP
dt

du

tt ,

,,

0

0

0                                                     (5)

 

where uuPFu )( •−=  and .0=pP We consider equation（5）in integral form Pr.III 

               
.)()(

0

)(

0 dssFueuetu
t

t

PsttP


− +=                            (6) 

For )(),,( 2321 = Luuuu we define ).,,( 321 uuuu =  We take a rectangular 

coordinate system. If ( )=xtu , ）),(),,(),,(( 321 xtuxtuxtu is a velocity field, define ,(
1

1

x

u
u




=  

).,
3

3

2

2

x

u

x

u








 Since the operator  = 


−=−

3

1 2

2

i
ix

 is strongly elliptic of order 2. Theorem7.3.6 
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in [11] implies that   is the infinitesimal generator of an analytic semigroup of contractions on 

)(2 L with )()()( 1

0

2 =− HHD . Hence  is also the infinitesimal generator of an 

analytic semigroup of contraction on )(2 L with )()()( 0,12 =− HHD , where 

)(2 H and )(0,1 H are the Sobolev spaces of vector value in )(2 H and )(1

0 H

respectively. We will prove that  is also the infinitesimal generator of an analytic semigroup of 

contraction on ).(2 bDL   

 

(2) Some lemmas 

     For ),(2 Lu if div  0=bu  then u is called b   divergence free. 

Lemma 1. If )( Cu
 
then )(2 bDLu  implies div  .0=bu  

Proof. Suppose that ( ) ).()(,, 2321 =  bDLCuuuu Then there exists a sequence 

 .,..2,1:)(,0 =  nCu b

n
such that ，n

n
uu

→
= lim

 
that is 0lim

)(2

=−
→ bDL

n

n
uu uniformly on 

 and 0lim
)(2
=−

→ L

n

ii
n

uu uniformly on  for 3,2,1=i  where div .0=nbu It follows 

from Theorem 7.16 in [12] that  

          0)()(lim)()(lim
2
12

1

2

=−=




 −   →→

dxxuxudxxuxu n

ii
n

n

ii
n

 

And so 0)()(lim =−
→

xuxu n

ii
n

 and )()(lim xuxu i

n

i
n

=
→

 uniformly on  for .3,2,1=i (see 

Theorem 1.39 in [14]) From the proof of Theorem 7.11 in [13] it follows that  

               

 

0

lim

limlim

)()(
limlimlim

)(lim)(lim
limlim

)limlim(
)lim(

3

1

3

1

3

1
0

0

0

03

1

3

1

3

1

3

1

0

=













=













+




=










−

−
+




=

−

−
+




=




+




=




=




=











=→

= →→

= →→→

→→

→= →

→→==

→

=

i
i

n

i

n

i
i

n

i

n

n

i

i
n

i
ii

i

n

ii

n

i

xxn

n

i

i
n

ii

i

n

i
n

i

n

i
n

xx

n

i

i
i n

n

i
n

i

n

i
ni

i
i

i

n

i
n

i
i

i

x

bu

x

u
bu

x

b

xx

xuxu
bu

x

b

xx

xuxu
bu

x

b

u
x

bu
x

b

x

ub

x

bu
divbu

ioi

ii

 

 This is to say div .0=bu  
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     Lemma 2. ( ) .;))(( 2,1

2  ⊥ WhhbbDL  

     
Proof. Suppose ).(,0  

bCu Then from integration by parts we have for )(2,1 Wh  

                     

( )

 

   

 =

 = == =

=−=



−=




−=




=




=

.0)()
)(

(

)
)(

()(),(,

3

1

3

1

3

1

3

1

3

1

hdxbudivhdx
x

bu

dxh
x

bu
dxhbudx

x

h
bu

x

hb
uhbu

i
i

i

i
i

i

i i

i
i i

i
i i

 

If ),(2 bDLu then there exists a sequence  .,..2,1:)(,0 =  nCu b

n
such that 

n

n
uu

→
= lim

 

uniformly on .  Then 

.0),(lim),lim(),( ===
→→

hbuhbuhbu n

n

n

n   

 

Lemma 3. For every )(2 Lu , div 0=u  if and only if div 0)( =− uI
 
for  

    −= :  < arg < r−  ,
  

where 0 ˂ ˂ 2
 . 

 Proof. Let ).(),,( 2321 = Luuuu Then  

   ),,,(
2

3

3

2

2

2

3

2

2

1

3

2

2

3

2

2

2

2

2

2

2

1

2

2

2

3

1

2

2

2

1

2

2

1

1

2

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u
u




+




+








+




+








+




+




=

3

3

3

3

2

23

3

3

2

13

3

3

2

32

2

3

3

2

2

3

2

12

2

3

2

31

1

3

2

21

1

3

3

1

1

3

)(
x

u

xx

u

xx

u

xx

u

x

u

xx

u

xx

u

xx

u

x

u
udiv




+




+




+




+




+




+




+




+




=

       

)()()(
3

3

2

2

1

1

2

3

2

3

3

2

2

1

1

2

2

2

3

3

2

2

1

1

2

1

2

x

u

x

u

x

u

xx

u

x

u

x

u

xx

u

x

u

x

u

x 


+




+








+




+




+








+




+




+








=

 

                      

).())((
3

3

2

2

1

1

2

3

2

2

2

2

2

1

2

divu
x

u

x

u

x

u

xxx
=




+




+








+




+




=

 

So we have  

                          ).)(()( divuIuIdiv −=−                         (7)                                

From (7) it is clear that div 0=u  implies that div 0)( =− uI . 

     Since − is a strongly elliptic operator of order 2 on  . From Theorem 7.3.2 in [11] it 

follows that there exist constant C ˃0 , 0r and 0 < < 2
  such that 
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)()( 22

)(


−
LL

uI
C

u 


                      (8)                                                   

for )()()()( 20,12 = LHHDu
 
and 

 

                   −= : <arg < ., r− 
   

From (8) it follows that for every    the operator −I  is injective from )(D into 

).(2 L  
From (7) it follows that 0)( =− uIdiv   implies that div 0=u . 

 

    Lemma 4. (1.5.12 in [6]) Let  0:)( ttT  be a 
0C -semigroup on a Banach space X . If 

Y is a closed subspace of X  such that YYtT )( for all 0t ,i.e., if Y is 0)( ttT - 

invariant, then the restrictions  

                               
Y

tTtT )(:)( =  

form a 0C -semigroup  0:)( ttT , called the subspace semigroup, on the Banach space .Y  

Lemma 5. (Proposition 2.2.3 in [6] Let ))(,( ADA  be the generator of a 0C -semigroup 

 0:)( ttT on a Banach space X and assume that the restricted semigroup (subspace 

semigroup)  0:)( ttT  is a 0C -semigroup on some −0))(( ttT invariant Banach space 

XY → . Then the generator of  0:)( ttT
 
is the part ))(,( ADA  of A  in .Y  

Lemma 6.  The operator
)(2 


bDL   with  =


ubDLDuD

bDL
),()()( 2)(2  

)(2 bDL  is the infinitesimal generator of an analytic semigroup of contractions on ).(2 bDL
 

Proof. From Theorem 7.3.6 in [11]  is the infinitesimal generator of an analytic semigroup 

of contractions on ).(2 L Then  is also the infinitesimal generator of an analytic semigoup of 

contractions on ).(2 L  Let 0)( ttT  be the restriction of the analytic semigroup generated 

by on )(2 L to the real axis .  0)( ttT is a 0C semigroup of contractions by Theorem 

7.2.5 and Theorem 3.1.1 in [11].  We have already noted that )(2 bDL  is a closed subspace of 

)(2 L  and is also a Hilbert space. We want to show that )(2 bDL  is −0)( ttT invariant.  

For every ),(,0  

bCu  div 0=bu  and    −= :)( < arg ˂ 

r−  , we have   bubuRI =− ):()( 
 
where  is the same as in the proof of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2021                   doi:10.20944/preprints202111.0139.v1

https://doi.org/10.20944/preprints202111.0139.v1


 7 

lemma 3. Since ( ) ( ) ( ) ( ) === 


−


− udtxbtTeudttTebubR tt

00
:  ( ) .: buR  From 

Lemma 3 it follows that div 0)):(():( == buRdivubR  . Since ):( R is bounded 

and so is continuous . Hence .),( 0

 CuR  That is to say that 


bC ,0 is ):( R -invariant for 

.)(   From Theorem 2.5.2 (c) in [11] it follows that 
+ R)( , and so 

 .:)( r    Hence 


bC ,0 is ):( R -invariant for every .r  Let 

)(2 bDLu then there exists a sequence nu such that uun
n

=
→

lim and  
 bn Cu ,0  for 

,...2,1=n .  Hence 
 bn CuR ,0),(  and     

.):():(lim uRuR n
n

=
→


  

Therefore )():( 2  bDLuR  for every .r  It follows that )(2 bDL is ):( R

-invariant for every .r  Now the Theorem 4.5.1 in [11] implies that )(2 bDL is −0)( ttT

invariant.  From Lemma 4 and Lemma 5 it follows that 
)(2 


bDL

is the infinitesimal generator of 

the 0C  semigroup  0:)(
)(2




ttT
bDL  

of contractions on ).(2 bDL
 

We will prove that  0:)(
)(2




ttT
bDL

 can also be extended to an analytic semigroup on  

).(2 bDL  Suppose that ，)(  i.e. there exists ):( R  from )(2 L  into ).(D  

Then for any ),()( 22  LbDLu we have 

              ( ) ( ) uuRI =− :  and ( )( ) .: uuIR =−                 (9)                             

Thus the formula (9) becomes  

        uuRI
bDLbDL

=−
 )()( 22

):()(   and .)():(
)()( 22

uuIR
bDLbDL

=−


  

Hence ( ) ( ) IRI bDLbDL
=−  )()( 22

:  and ( ) ( ) .:
)()( 22

IIR
bDLbDL =−

   We get 

                     
.):()(

)(

1

)( 22 

−


=−

bDLbDL
RI 

                    (10)                 

From the formula (10) and Theorem 2.5.2(c) in [11] we have  

               
   0arg:)()( 2)(2

+=


 
bDL

 

where 0 ˂ ˂ .2
  Thus, for ,  

)(2 
−

bDL
I  is invertible. From Theorem 2.5.2(c) in 
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[11] we have for 0,    

uRSupR
bDL

u

bDLu
bDL

bDL

)(

1

)(
)( 2

)(2

2
2

:(:(


=




=




 

                    
.),():(

))(),((

1

)( 22

)(2

2 


M
RuRSup

LLB

u

Lu

L

=


=





 

Now Theorem 2.5.2(c) in [11] implies that  0:)(
)(2





bDL

tT
 
can also be extended to an 

analytic semigroup on )(2 bDL . Therefor 
)(2 


bDL

is a infinitesimal generator of an analytic 

semigroup of contraction on )(2 bDL .We always denote 
)(2 


bDL

by  in the follows.  

      

     Since )()( 22 = DLbDL in the case b  is a constant. So we have 

Corollary 1. The operator is the infinitesimal generator of an analytic semigroup of 

contractions on ).(2 DL
 

 

 Theorem 2 in [9] is similar to the above Lemma 6. Sobolevskii proved the fact that =pA  

P  generates an analytic semigroup on ( ) ( )= 2

2 DLL in [17 ] . Giga gave a different proof 

in [9 ]. Our proof using the theory of semigroups of bounded operators is more simple.   

Lemma 7. Suppose that )( Cb then ).()( 22  bDLDL  

Proof. If )( Cb  then ,))((),( 2

2,1 ⊥ DLbWb so 0),( =bu  for every 

),()( 2,0   DLCu   that is 

                       .0)(
3

1
=




  =

dx
x

b
u

i
i i  

So 0
3

1
=




 =

i
i i

x

b
u  for every .,0

 Cu  Hence 

                   
 

.0
3

1

3

1

3

1
=




+




=




=  === i

i

i
ii

i
i

i

i

x

u
bu

x

b

x

bu
budiv  

So )(,0  

bCu  and ).()( ,0,0  

bCC   Therefore 

                                       

).()()()( 2,0,02 ==  bDLCCDL b  
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Suppose that A− is the infinitesimal generator of an analytic semigroup )(tT on a Banach 

space .X  From the results of section 2.6 in [11] we can define the fraction powers 
A  for 

10  and 
A is a closed linear invertible operator with domain )( AD  dense in .X  

)( AD  equipped with the norm xAx 


=  is a Banach space denoted by X . It is clear 

that 0< <   implies  XX   and that the embedding of X  into X  is continuous. 

 

 If =− A  and   ˃ 2
1 then 

2
1XX  and ( )( )−


D  )())(( 2

2
1

− DLD , 

the embedding of ))(( −D into ))(( 2
1

−D is continuous. If a sequence ,2,1( =nun  

,0lim),)((...)
)(2

=−
→ 



DLn
n

uD then
→n

lim ,00
)(2

=−
 DLnu that is 0lim =

→
n

n
u in 

),)(( −D and so 0lim =
→

n
n

u in ).)(( 2
1

−D  It follows from Proposition 1.17 in [3] that 

.0lim
2
12 )(
=

→ DLn
n

u Hence 0
)(2

→
 DLnu always implies .0

2
12 )(
→

DLnu We can prove that 

convergence in )),)(((
)(2 




•−

DL
D implies convergence in )),)(((

2
12

2
1

)(
•−

DL
D and 

conversely, that is the norms 
)(2 

•
DL

 and 
2
12 )(

•
DL

in ))(( −D are equivalent (see p291 

Problem 8 in [7]）, therefore there exists 0L ˃0 such that for any ))(( −Du   

            
2

1222
)(0)()(

)(


=−
DLDLDL

uLuu



 .                 (11)

                   

For )(Du  we have  

            .)(
2

122

2
1

22 )()()()( 
=−=−=

DLDLDLDL
uuuu               (12)        

 

In [9] Giga proved the following result. Suppose that 1< r ˂ 2,  n . 

Lemma 8. Let 0 < .2/)1( 1
2

1 −−− rn  Then  

                
rrr

vAuAMvuPA
,0,0,0

),(  −
 

with some constant ),,,,( rMM =  provided ,2/12/ +++ rn  ˃0,  

˃0,  + >1/2. 

From the Lemma 8 and the formulas (11) (12) we see that if take ,2,3 == rn  
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4/30 ==  ， and ,4/3=  then              

2
12

2
12

22

2,0
22

)()(

2

0

)(

()()(

)()(

)()









−−

•=•=•

DLDL

DLDL

WLDL

vuML

vuM

vuvuvu

）（

）
）（（


 

with some constant M for any ).(, 2 DLvu
 

Hence we have 

    Lemma 9. Suppose that )(2 DLvu，
 
are  velocity  fields and • vu )(  

),(2 DL  then 

.)(
2

12
2

122 )()(

2

0)( 
•

DLDLDL
vuMLvu              

                           

Assumption (F). Let )(2 = bDLX and U  be an open subset in XR +
(0˂ ˂1). 

The function XUf →: satisfies the assumption (F) if for every Uut ),(  there is a 

neighborhood UV  and constants ,0L  0 < 1  such that for all )2,1(),( = iVut ii  

              )(),(),( 21212211 


uuttLutfutf −+−− .                (13) 

Lemma 10. ( Theorem 6.3.1 in [11]) Let A− be the generator of an analytic semigroup 

)(tT  on the Banach space )( 3

2 RbDLX =  satisfying MtT )(  and assume that 

).(0 A−  If, 0 < <1 and f satisfies the assumption (F) then for every initial date 

Uut ),( 00  the initial value problem 

        

 







=

=+

00

0

)(

],()),(,()(
)(

utu

TtttutftAu
dt

tdu

                                     (14)                               

has a unique local solution  ) ( ) ):,():,( 10

1

10 XttCXttCu   where ),( 0011 uttt = ˃ 0t . 

 

In what follows we will need Banach lattice (see [1] ). A real vector space G which is 

ordered by some order relation   is called a vector lattice (or Riesz space) if any two elements 

Ggf , have a least upper bound, denoted by gf  , and a greatest lower bound , denoted by 

gf  , and the following properties are satisfied: 
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(i) If ,gf   
then hghf ++  for all ,,, Ghgf   

(ii) If f0 , then tf0 for all Gf   and Rt0 . 

   A Banach lattice is a real Banach space G endowed with an ordering  such that ( ),G is 

a vector lattice and the norm is a lattice norm, that is gf  implies gf  for Ggf , , 

where )( fff −= is the absolute value of f and • is the norm in .G  In a Banach lattice 

G  we define for Gf   

                      ,0: =+ ff    0)(: −=− ff
.
 

The absolute value of f is
  

−+ += fff and .−+ −= fff  

                       gfgfgf 0  .                                    

In what follows we will need the above formula . 

     In )(2 L  we define the order for )(, 2 Lgf  

                     )()( xgxfgf   for ..ea  x  

and     )(),(max:))(( xgxfxgf = ,   )(),(min:))(( xgxfxgf =  

for ..ea  x . Then ),(),( 22,1  LW
 

)(2 L and )(2 DL  are all Banach lattices. 

(see [1] p.148) 

 

Lemma11. Suppose that )(, 2 DLvu are divergence free satisfying 0,0 =



=





j

i

j

i

x

v

x

u
 

).( ji  Then ,)( vu •  ).()( 2 • DLuv   

Proof. If vu, )(2 DL are divergence free satisfying =



=





j

i

j

i

x

v

x

u
,0 ).(0 ji  From 

[4] and [8]we have  

             
=•=• 0,0 hdxvhdxu  for all ).(2,1 Wh

  

That is .0
3

1
=




  =

dx
x

h
u

i
ii

Since )(2 L is a Banach lattice and
⊥ )(2DLh  for 

),(2,1 Wh then .)()(),(,, 2

−+−+−+ −=−= hhhDLuuuuu From proposition 10.8 
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in [1] the lattice operations  and  are continuous, we have
            

),(

),,(),,(
lim

),,(),,(
lim

),,(),,(
lim

)
),,(),,(

lim(

)
),,(),,(

lim(

)
),,(),,(

lim(

)(

)(

)(

)(

3

2

1

303

3021321

202

3201321

101

3210321

303

3021321

202

3201321

101

3210321

3

2

1

3

2

1

303

202

101

303

202

101

+

+

+

+

++

→

++

→

++

→

+

→

+

→

+

→

+

+

++

+

=







































=



























−

−

−

−

−

−

=



























−

−

−

−

−

−

=









































=







































=

h

x

h

x

h

x

h

xx

xxxhxxxh

xx

xxxhxxxh

xx

xxxhxxxh

xx

xxxhxxxh

xx

xxxhxxxh

xx

xxxhxxxh

x

h

x

h

x

h

x

h

x

h

x

h

h

xx

xx

xx

xx

xx

xx

 

Similarly, ).()( −− = hh ）= ()()( 2

2,02,1 LWW are all Banach spaces. )(2,1 Wh

implies ),(, 2,1 −+ Whh .0)(
++ =• dxhu  Since v is divergence free, ,0

3

1
=




 =i

i

i

x

v

so 

i

i

x

v




are all bounded, 1,2,3)i =




（L

x

v

i

i for some constant L ˃0. We have 

0
)(

)(

)()()(0

3

1

3

1

3

1

=












=

••



−=

+

 =

++

 =

+

++



+

 =

+

  

 

dx
x

h
uLdx

x

h

x

v
u

dxhvudx
x

h
uL

i
i i

ii

i

i i

i
i i

 

Hence .0)()( =•• ++

 dxhvu
 
Similarly, .0)()( =•• −+

 dxhvu So we have 

  .0)()()()( =−••=••  

−++


dxhhvuhdxvu

 

Similarly, .0)( =••
− hdxvu Therefore 

           

    

−+

 

−+ =••−••=••−=•• 0)()())(()( hdxvuhdxvuhdxvuuhdxvu

 

and so ).()( 2 • DLvu Similarly ).() 2 • DLuv（   
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(3)The solutions of lake equations 

 

Now we study the viscous lake equations (2). In the following proof of Theorem 1 we will 

need valuation for nonlinear term uu )( • . Lemma 9 gives a good valuation for uu )( • in 

).(2 DL But we don not know that whether this valuation is established in ).(2 bDL From 

lemma 7 we see that if )( Cb  then ).()( 22  bDLDL Therefore we can consider the 

solution of (2) in the state space )(2 DL and use lemma 9. 

       

  
A function u which is differentiable almost everywhere on  T，0  such that ,u  

 )(:,0 2

1 DLTL  is called a strong solution of the initial value problem (2) if 0)0( uu = and 

u satisfies (2).  

 

Let  ( )
2

1)(;,0 2 DLTH  denote the space of all Hölder continuous functions )(tu  on 

 T,0  with different exponents in ( 1,0  and with smooth functions values )(tu satisfying 

0=




j

i

x

u
)( ji  in the Banach space .)(

2
12 DL From the formula (4) we see that these functions 

values are all divergence free. Then from lemma 11 for any  ( )
2

1)(;,0 2  DLTHu and any 

 Ttt ,0, 21  , ( ) );()()( 221 • DLtutu and for any  ( )
2

1)(;,0, 221  DLTHuu and any

 Tt ,0 , ( ) ).()()( 221 • DLtutu  In the following we will use these facts. The bilinear 

form )())(( tutv •  on 
2

1)(2 DL takes value in ).(2 DL        

Let ),,(),( 321 kkkxtuk =  ,,0( Tt ,x )).3,2,1, = iRki Then  ( THuk ,0  

)
2

1)(; 2 DL for all Rkkk 321 ,, and all  .,0 Tt Suppose that =)(xu  

))(),(),(( 332211 xuxuxu
2

1)(2 DL with smooth ).3,2,1)(( =ixu ii

 

Let )(),( xuxtu  for t  

 .,0 T Then  ( ).)(;,0),(
2

12  DLTHxtu
 
Hence  ( )

2
1)(;,0 2 DLTH is not empty.

 

Consider 

the graph 

                   ( ) 
2

1)(;,0),,0(:))(,(: 2 = DLTHuTttutG
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Take the open kernel 
0GU = of G in .)(),0(

2
12 DLT Then U is an open subset of 

.)(),0(
2

12 DLT It is clear that G is not empty, and so U is also not empty. ))(,( tutF

uu )( •−= is a function : ).(2 →DLU                                   

 

Theorem 1. The initial value problem (2) for viscous lake equations has a unique local strong 

solution if the initial value ,),( 00 Uut  i.e., )( 00 tuu = for some Hölder continuous function u

on  T,0 with smooth function value 
2

1)()( 2 DLtu satisfying )(0 jiuij = and )(xb  

).(C  

Proof. We will find that by incorporating the divergence-free condition, we can remove the 

pressure term from our equation. (see p.
3271 in [4], p. 6234 and p. 9239 in [12] ) In fact, from  

 )(;)( 2,1

2 = ⊥ WhhDL we see that 
⊥ )(2DLp and so .0=pP For u  

)(2 DL we have )(2  DLu because to Lemma 6. Hence by applying P  to the equation (2) 

we have .uuP = It follows from uu )( • )(2 DL
 
that  .)()( uuuuP •=•  

Therefore we can first rewrite (2) into an abstract initial value problem on )(2 DL

 

 

( 









=

+=

= xuu

TtttutFu
dt

du

tt ,

,)),(,(

0

0

0

 

                                             (15)                            

where uututF )())(,( •−=  is an abstract function. From corollary 1   is the infinitesimal 

generator of an analytic semigroup )(tT of contraction on )(2 DL and ,1)( tT ).(0    
 

 If ( )tu is Hölder continuous about t  on  Tt ,0 in 
2

1)(2 DL , then there is a constant C

and 0˂ 1  such that  

             


21)(21
2

1
3

2

),(),( ttCxtuxtu
RDL

−−  for  .,, 021 Tttt 
            (16) 

For any Ututtut ))(,()),(,( 222111 we have ),())(( 1111 tutu • )()())(( 21212 • DLtutu
 

and 
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                            (17)                
 

We used lemma 9 in the above third step . For any 
2

1)()(),( 221 DLtutu we have  

 

( ) ( ) ( )( ) ( )
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2
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  (18)

 

We used the Lemma 9 in the above third step and the formula (16) in fifth step.
  

 Suppose that .),( 00 Uut  Set    

.,1:))(,(),(
2

12 )(0000








−−==


 DL
uuttUtututBV

 

Then for Vtut ))(,( ,  
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DL
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),,( 12  Min=  then from (16),(17) and (18) for all )2,1(),( = iVut ii
 we have 
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tututtL
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tutututututututu

tutFtutFtutFtutF
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


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Hence ))(,( tutF  satisfies the assumption )(F , then by lemma 10 for every initial data 

Uut ),( 00  the initial value problem （15）has a unique local solution  

             u  ) ( ) ))(:,())(:,( 2

'

0

1

2

'

0  DLttCDLttC
                 (19) 

where ='t  )( 0

' ut . Since )( Cb (19) and lemma 7 imply  

                   ) ( ) )).(:,())(:,( 2

'

0

1

2

'

0  bDLttCbDLttCu
 

Changing the value of u  on   to zero we get a unique local strong solution for (2). 

Using a similar induction way as Theorem 3.9 in [9] or as Theorem 5.1 in [15] we can prove 

that the solution  )( )( ) .',),(
3

0   ttCxtu  We can also prove directly that ),( xtu  is smooth. 

In fact, the solution (19) of (15) is also the solution of (6). The Theorem 3.4 in [9] mean that as 

long as the solution of (6) exists , this solution is smooth. From Theorem 3.4 in [9] we have the 

solution  )( )( ) .',),(
3

0   ttCxtu  Substituting ),( xtu into (2) we get the solution ).,( xtp

We also have  )( ).',),( 0   ttCxtp
 
Since  )( ) .)',(),( 3

0   ttCxtu  It follows from  

u )(2 bDL and
 
lemma 1 that div .0=bu So the solution ),( xtu  is divergence-free. Hence 

，),( xtuu = ),( xtp is the unique local strong solution of the initial value problem (2) for viscous 

lake equations. 

The Theorem 1 has the following corollary. 
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Corollary 2. The Navier-Stokes initial value problem (3) has a unique local strong solution 

if the initial value .),( 00 Uut   

 

(3) Drift homogenization  

 

A composite is a material containing two or more finely mixed components.  Composite 

materials are widely used nowadays in any kind of industries. How to determine the properties of 

a composite material, for example thermal, electrical or linear elastic properties of materials ? It 

can be solved by the homogenization of a set of partial differential equations. The homogenization 

theory allows to describe the asymptotic behaviour as 0→ of partial differential equations of 

many types. A classical problem is the elliptic Dirichlet problem 

                          





=

=−

xu

xfuAdiv

,0

,)(




  

where f is given in )(1 −H and the matrix 
A is the −Y periodic matrix. 

     The prescription of traditional Chinese medicine consists of a variety of Chinese herbal 

medicines. Its efficacy can be obtained from the homogenization of a group of partial differential 

equations controlled by each drug. The actual speed of a ship can be obtained from the 

homogenization of a set of Lake equations disturbed by the ship's dynamic speed ( drift) v . The 

homogenization of PDEs is completed by the following three steps: 

1. Fist Construct a set of partial differential equations satisfied by objective functions 

)0( →u and prove the existence of solutions u ; One of the ways to solve these equations is 

to change the equations into a variational formulation, that is multiplying the equation by a 

arbitrary(test function) )(1

0 Hv , then by integrating by parts. And then use lax-Milgram 

theorem to prove the existence of solutions. But in this paper we will use the method of 

semigroups . 

2. Prove that u strongly or weakly converge to u in some state space when 0→ and u

is the homogenization value; 

3. Find the equation satisfied by u . Solve this equation and get u . 

Now we discuss the lake equation in a bounded domain  of ，3R perturbed by oscillating 

term ， uv )( •
 

i.e. 

( 













=

=

=

=+−•+•+

=

xxtu

xuu

xbudiv

Tttxfpuuvuuu

tt

t

,0),(

,0)(

,,,)()(

,0

0

0









                 (20)
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where the oscillations are produced by the sequence of vector-value functions v which strongly 

converges to some v  in 
2

1)(2 bDL when .0→  Here v is the scheduled ship speed and 

v is the actual approximate speed, )()(lim
0

tvtv =
→




in
2

1)(2 bDL for each  .,0 Ttt   In 

what follows all  vu , are velocity fields. 

 Theorem 2. Suppose that the smooth initial value Uut ),( 00  for each  >0 , )(xb  

( )，C v and ),( xtf are Hölder continuous in  Tt ,0
with exponent  and the values in

),(2 DL
0

)(
2

12

Lv
DL


 and v are smooth and satisfy ).(0 ji

x

v

j

i =


  Then the initial 

value problem (20) for viscous lake equations have local smooth strong solutions . 

  Proof. The proof is similar to Theorem 1. First we rewrite (20) into an abstract initial value 

problem on the state space .)(
2
12 DL

    

 

 

( 
.

,

,)),(,(

0

0

0








=

+=

= xuu

TtttutFu
dt

du

tt 




 

                                        (21)                          

where  ftutvtutututF +•−•−= )())(()())(())(,( where v is fixed for  >0. Let 

                     ( ) 
2

1)(;,0),,0(:))(,(: 2 = DLTHuTttutG
  

Take the open kernel 
0GU = of G in .)(),0(

2
12 DLT Then U is an open subset of

  .)(,0
2

12 DLT The bilinear form uv )( • on 
0H takes value in ).(2 DL That is, 

 uvuututF )()())(,( •+•−= is a function : ).(2 →DLU      

Suppose that .),( 00 Uut   Set 

                tUututBV :),(),( 00 ==  <
2

12 )(0,1


−
DL

uu  < .
 

Let .2, 2

01)(0

2
12

LMLLuL
DL

=+=


 Similarly to Theorem 1. from (16),(17) and (18) for any

)2,1(),( = iVut ii   we have 
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where ),,,,,4( 31

02

02

2

01

02

00

2

04 CCLMLLCMLCLMLLCMLMaxC = ).( 4

2

01 CLMLMaxL +=
 

Hence ))(,( tutF  satisfies the assumption )(F , then by lemma 10 for the initial data 

Uut ),( 00  the initial value problem （21）has a unique smooth local strong solution  

                ) )).(:),(())(:,( 210

1

210  DLttCDLttCu                   (22) 

 Since )( Cb (22) and lemma 7 imply 

                ) ))(:),(())(:,( 210

1

210  bDLttCbDLttCu  

Similarly to Theorem 1 we get smooth strong solutions u and p for  >0. 

     Theorem 3. Suppose that )()(lim
0

tvtv =
→




in 
2
1)(2 bDL for each  Ttt ,0 . Then there 

exists 
2
1)()( 2 bDLtu  such that )()(lim

0
tutu =

→



in 

2
1)(2 bDL for each  10 ,ttt . 
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     Proof. For each fixed  ˃0 let )(ty be the fixed point in the proof of Theorem 6.3.1 in 

[11]. Then 
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Similarly,                   
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vvvv

→→→
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From (3.10)in [11] we have 
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        (23) 

Since )()( 2
1

stT −−  is bounded by Theorem 2.16.13(c) in [11], hence the below of (23) has a 

limit when 0→  by 

Theorem 7.16 in [13]. 

 

dssvsvstT

dssvsvstT

dssvsvstT

t

t

t

t

t

t

)())()(()(

)(lim))(lim)(()(

)())()(()(lim

0

2
1

0

2
1

0

2
1

00

0

•−−−=

•−−−=

•−−−







→→

→










. 

Therefor the above of (23) also has a limit and so there exists ).()(lim
0

tyty =
→




Otherwise,
 

)(ty , )()( 2
1

ty
−

−  and dssysystT
t

t
)())()())((()( 2

1
2
1

0

2
1



−−
−•−−−  are all 

 

unbounded or oscillatory, and they cannot be offset, inducing the above of (23) unbounded or 

oscillating, a contradiction.  

    
Since ),()()( 2

1

tytu 

−
−=  so there exists limit 
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



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for  ., 10 ttt 
           

      Theorem 4. Assume that ffvv ==
→→





 00

lim,lim in )(2 bDL  and there exists p  

  ),( 0  TtC such that ,lim
0
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→



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                              (24) 

Proof. From theorem 3 )()(lim
0

tvtv =
→




implies ),()(lim
0

tutu =
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


i.e. =−
→ )(0 2

)()(lim
bDL

tutu
  

0 for each  .,0 Ttt This strong convergence is uniform for .x  Now by using similar 

Theorem 7.11 in [13] we have  

(1) .
)()(

lim
)()(

limlim
)()(

limlimlim
,

,

,

,

0,

,

00 ,,, t

u

tt

tutu

tt

tutu

tt

tutu

t

u

tttttt 


=

−

−
=

−

−
=

−

−
=





→→→→→→












 

(2)  Let ),,(),,,( 321321 uuuuuuuu ==  . 

i

i

ii

iiii

xx
ii

iiii

xx
ii

iiii

xx
i

i

x

u

xx

xuxu

xx

xuxu

xx

xuxu

x

u

iiiiii 


=

−

−
=

−

−
=

−

−
=





→→→→→→
0

0

0

0

0
0

0

00

)()(
lim

)()(
limlim

)()(
limlimlim

000













for .3,2,1=i  This is to say that uu =
→


 0
lim  implies 

i

i

i

i

x

u

x

u




=





→



 0
lim for .3,2,1=i

 

2

2

0

0

0

0

0

0

0

002

2

0

)()(
lim

)()(
limlim

)()(
limlimlimlim

00

0

i

i

ii

ix

u

ix

u

xx
ii

ix

u

ix

u

xx

ii

ix

u

ix

u

xx
i

i

ii

i

x

u

xx

xx

xx

xx

xx

xx

x

u

xx

u

i

i

i

i

ii

i

i

i

i

ii

i

i

i

i

ii




=

−

−
=

−

−
=

−

−
=








=













−









→→









→→→→

















 

for .3,2,1=i This to say that uu =
→


 0
lim implies 

2

2

2

2

0
lim

i

i

i

i

x

u

x

u




=





→




for .3,2,1=i

 
=

→
iu

 0
lim

ij

j

i

j

j

i u
x

u

x

u
=




=




 ==→

3

1 2

2
3

1 2

2

0
lim 



 

for .3,2,1=i
 
So .lim

0
uu =

→



 

(3) For 3,2,1=i  
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Similarly, ( ) .)(lim
0

uvuv •=•
→


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(4) Now from (1),(2),(3) and the equations (20) we take limit and get
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It is clear that div 0=bu for  >0 implies  

                   div divbu =
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00 00
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                    ( ) ( ) 0,lim,
0

==
→

xtuxtu 


 when .x  

Therefore pu, satisfies (24). 

      

Now we consider a special case (stationary Stokes equation). In [1] M.Braine and P.Gerard 

studied a scalar and a two-dimensional stationary Stokes equations perturbed by a drift in the 

sense of distributions. Under higher integrability conditions the Tartar approach based on the 

oscillations test functions method applies and leads to a limit equation with an extra zero-order 

term. However, the lack of integrability makes difficult the direct use of the Tartar method for the 

three-dimensional Stokes equations. But we can use the semigroup method to study the 

three-dimensional stationary Stokes equation in the usual sense ).(2 bDL  

When a ship is sailing in the lake, the set dynamic speed is v . Due to the operation error, the 

actual dynamic speed is ),( xtv , v infinitely close to v , that is 
0

lim
→

.0
)(2

=−
bDL

vv  

How to calculate the relative speed of the ship, the speed of the combination of dynamic speed and 

lake speed? In order to keep the ship's speed stable, it is assumed that the ship's dynamic force 

),( xtf  makes the time-varying acceleration 
t

u



   and the spatial position dependent 

migration acceleration  uu )( • to be zero. The transfer acceleration with the change of space 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2021                   doi:10.20944/preprints202111.0139.v1

https://doi.org/10.20944/preprints202111.0139.v1


 23 

position produced by ship dynamic force ),( xtf  is .)(  uv • This acceleration )( •v  

u counteracts the accelerations produced by the viscous force u and the pressure gradient 

force p such that 0=




t

u and 0)( =•  uu . This is the result of zero resultant force of 

 uf , and .p The relative speed of the ship is the homogenization of ,u .lim
0




uu
→

=  Our 

mathematical problem is as following 
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                               (25) 

From Theorem 2, Theorem 3 and Theorem 4 we have the following corollaries 

  Corollary 3. Suppose that for each  >0, ),()(,),( 00  CxbUut     fv , are 

Hölder continuous in
2

1)(2 DL and in )(2 DL respectively with exponent ,  and 

0

)(
2
12

)( Ltv
DL


  ）（ Ttt ,0 for some constant .0L Then the viscous lake equations (25) has a 

unique smooth local strong solutions . 

   

Corollary 4. Suppose that vv =
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
 0
lim in )(2 bDL . Then there exists 

2
1)(2 bDLu  

such that uu =
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
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lim in )(2 bDL . 

    Corollary 5. Assume that ffvv ==
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