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Abstract

In this paper we study solutions and drift homogenization for a class of viscous lake
equations by using the method of semigroups of bounded operators. Suppose that the initial value

(t,,uy) €U, ie., U, =u(t,) for some Holder continuous function U on [O,T] with smooth

function value U(t) € DL,(Q),, satisfying O;u; =0(i # j) andb(X) € C™(€2). Then the

initial value problem (2) for viscous lake equations has a unique smooth local strong solution.
Using this result we study the drift homogenization for three-dimensional stationary Stokes

equation in the usual sense bDL, (Q2).
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(1) Introduction

The viscous lake equations considered in this paper have the following equations (see the
formula (1.3) in [17])

8, (bu*) + div(bu” ®u*) + A (u*)+bVp* =0,xe Q,t € (0,T] b
div(bu“)=0,xe Q

for (t, X)E (O,T] xQ with Q< R?, a bounded domain with smooth boundary OQ of class
C?, u> 0 represents the eddy viscosity coefficient, U* = u* (U (t, X), U4 (t, X),us (t, X)) stands

for the three-dimensional fluid velocity, P = P(t,X) is the pressure. Moreover, the depth b(X)

is a given function. We assume that the boundary is the only place where the depth can vanish,
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namely: there is a positive constant M such that 0<b(x) <M in Q. A is a viscous second

order operator depending on b which can satisfy the two expressions

() A, (¢) = —2,div(bD(e) + 2bdiv(e)l),  (i1)A,(®) =—2DA(e)

where | is the 3x3identity matrix and D(e) =(V e+(Ve)')/2 is the deformation tensor.

The equation (1) shows that the system does not describe incompressible flow, it is a constraint
that plays a role similar to that played by the incompressibility condition for the incompressible
Navier—Stokes system. We do not have an existence result concerning the solution of viscous

shallow water equations with viscosity term given by (i) until now.

We consider in this paper the well posedness of system (1)- (ii) with initial and boundary

conditions which is given as follows
AU + (U” e V)U” — AU* +Vp* =0,xe Q,t e (t,,T]
div(bu“)=0,xe Q
u”‘tztozug‘,XeQ
u“(t,x) =0,x € 0Q

The existence, uniqueness and regularity properties of solutions for the viscous lake equations are

@

extensively studied. There is an extensive literature on the solvability of the initial value problem
for viscous lake equations. The terms and symbols in this paper are the same as [18]. For some
narratives and background, please refer to [18].

In case when b(X) is a constant, system (2) becomes similar to the classical 3D

incompressible Navier-Stokes equations with the external force f =0 as follows

%:Au_vp—(u OV)U,XEQ,'[G('[O,T]

Veu=divu=0
Ul,o=0,t e (t,T]
U‘t:t0=U0,X€Q

®)

Let L,(Q) be the Hilbert space of real vector functions in L?(€2). That is

L(Q) = {u:Q > R%u=(U,,U,,u,),u; € P (Q)(i =1,2.3)}.
For U=(u;,U,,U),V=(V,V,,V,;) € L,(€2), we define the norm and the inner

Il oy = ) @) =37 (v

then L,(Q)is also a Hilbert space. The set of all real vector functions U such that div bu=0
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and UeCg(Q)is denoted by Cgy(Q). Let bDL,(Q) be the closure of Cg,(€) in
L, (Q). The set of all real vector functions U such that div U=0 and U e Cg (Q)is denoted
by Cg,(€). Let DL,(Q) be the closure of Cg,(Q)in L,(€2).In the case when bis a

constant DL, (Q) = DL, (€2). Similarly to p.270 in [4] we can prove that if UeC™(€2) then
u ebDL,(QY)if and only if divbu=0in Q and u, =0 on OQ. 4)

(see lemma 1) We will see in lemma 7 that if b e C*(Q) then

Cib (@) Ci (@ L(Q),  DL(Q)<bDL, Q) L,(Q) =W**(Q),

and

”.”DLZ(Q) = ”.”bDLZ(Q) = ”. L(Q)’

L,(©) = DL, () ®(DL,(Q))* =bDL, () ® (DL, ()"
From [4] and [9] we have (DL,(Q))* ={Vh:h eW"?(Q)}and (bDL,(Q))" 2
{th;h er’Z(Q)}. (see lemma 2) LetP be the orthogonal projection from L,(Q2) onto

bDL, (€2). A= PAis called the Stokes operator. Since VP =bVh has a solution h e W*?(Q)

for beC”(Q).By applying P to the first equation of (3) and taking account of the other

equations , we are let the following abstract initial value problem, Pr.1I

?j_l:: PAu+Fu,te(t,,T]

Ul =Uy, XeQ
‘t:to 0 (5)
where FU=—P(ueV)u and PVp =0.We consider equation (5) in integral form Pr.III

u(t) =e™u, + f e™PAEy(s)ds. (6)

For U=(U,U,,U,)€L,(2) we define Au=(Au,Au,,AU,). We take a rectangular

u
coordinate system. Ifu(t, X) = (U, (t, X), U, (t, X), Uy (t, X)) is a velocity field, define VU = (%,
X

3 0°
). Since the operator —V = —ZHF is strongly elliptic of order 2. Theorem?7.3.6
o)

OX,  OX,


https://doi.org/10.20944/preprints202111.0139.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2021 d0i:10.20944/preprints202111.0139.v1

in [11] implies that A is the infinitesimal generator of an analytic semigroup of contractions on

L*(Q)with D(-A)=H?*(Q)"H;(Q). Hence Ais also the infinitesimal generator of an
analytic semigroup of contraction on L,(Q) with D(-A)=H,(Q)"H, () , where

H,(Q) and H,((Q) are the Sobolev spaces of vector value in H?(Q) and H;(Q)

respectively. We will prove that A is also the infinitesimal generator of an analytic semigroup of

contraction on bDL, (Q2).

(2) Some lemmas

For UeL,(Q),if div bu=0 then Uiscalled b divergence free.

Lemma 1. If ueC”(Q) then UebDL,(€2) implies div bu=0.

Proof. Suppose that U = (Ul, u,, u3)€ C”(Q) NbDL, (). Then there exists a sequence

{u" eCs(Q):n=12,.}su

= Quniformly on

n—ow n—o bDL, (Q)

ry = 0 uniformly on Q for i=12,3 where div bu" =0. It follows

N—o0!

from Theorem 7.16 in [12] that
) AUNNT I R P ) L
][ o 00w 0 0] = [t 00 o o =0

And so limlu, (X)—u]'(x)|=0 and limu?(x)=u;(x) uniformly on Qfor i=123. (sce
n—o0 N—o0

Theorem 1.39 in [14]) From the proof of Theorem 7.11 in [13] it follows that

_ abu 8(b||mu ) o
divbu=3"7 == e — —Ilmu b—Ilimu
2 ox, Y -G ox e o, o )
b Ilmu (x)—Ilmu (X;0)

=37 [ lim v/ +b lim == ]

! = OX; X —=>Xig X, = Xio
=5 Lim 2y b lim tim 400 =4 ()

i=1 R axi N—o0 X; —>Xiq X — X,
=z_3 Ilma—bu +blim 24

i=1 _n—m axi n— 8)(

: s | obu

=m2i_{—ax_ }
=0

This is to say div bu=0.
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Lemma 2. (bDI-z(Q))L =2 {th; h GWLZ(Q)}-

Proof. Suppose U € Cg’, (€2). Then from integration by parts we have for h cW™(Q)

(u,bvh)= le(,, ) lejb dx [, O buhydx—| (Zﬁla(abu)h)d

[ a(;u ))hdx [ div(bu)hdx =o0.

Ifu € bDL, (€2), then there exists a sequence {u“ €Cyp(@Q):n= 1,2,...} such that U =limu"

uniformly on €. Then

(u,bVh) = (limu",bVh) = lim(u",bVh) = 0.

n—o

Lemma 3. Forevery UeL,(Q),divu=0 ifandonlyif div (Al —A)u=0 for

AeZ,={1:9-7 <agl<m-3|A|=r}
where 0<9<7.

Proof. Let U = (U}, U,,U,) € L,(€2). Then

o’u, o°u. o%u, o°u, o%u, o°u, d%u, o°u, o4
Au=(C2 48, 20 2 Y U 3 3, 9%

X' XS XS OX OX) DX OX” %, ax32)’

d0i:10.20944/preprints202111.0139.v1

3 3 3 3 3 3
div(Au):au31+ au12+ aul 8u2 +6u§+ ou, 8u3 8u3 aug
OX,~  OX,0%, axlax 6x 6x oX, axzax 6x ax ax 6x OXq
2(_ i_}_%) 2(_ i-}-%)-l- 2(_ %.}.%)
a OX, OX, OX;  OX, OX, OX3 OX;~ OX; OX, OXg
0° 82 ou, ou, ou :
=(—5+ 2)( L+ —2 4+ 3)=A(divu).
X 6'x2 8 0%, ax2 X,
So we have
div[(Al —A)u]= (Al —A)(divu). (7)

From (7) it is clear that div u=0 implies that div (1l —A)u=0.

Since — Alis a strongly elliptic operator of order 2 on €2. From Theorem 7.3.2 in [11] it

follows that there exist constant C>0,r>0and 0<3<74 such that
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C
||u||L2(Q) < m”(’u _A)u”LZ(Q) ®)

for Ue D(A)=H,(Q)nH, ((Q) cL,(Q) and
AeZ,={A:9-m<agl<m -4 |21}
From (8) it follows that for every A €ZX, the operator Al —A is injective from D(A) into

L,(€2). From (7) it follows that div(Al —A)u=0 implies that divu=0.0

Lemma 4. (1.5.12 in [6]) Let {T :t> O} be a C,-semigroup on a Banach space X . If
Y is a closed subspace of X such that T(t)Y Y for all t>0.ie, if Y is T(t),,-
invariant, then the restrictions
T, =T,
forma C;-semigroup {f(t)‘ i 0}, called the subspace semigroup, on the Banach space Y.

Lemma 5. (Proposition 2.2.3 in [6] Let (A D(A)) be the generator of aC-semigroup
{T (t):tZO} on a Banach space X and assume that the restricted semigroup (subspace
semigroup) {f(t)‘ :tZO} is a C,-semigroup on some (T (t)),,—invariant Banach space
Y — X . Then the generator of {T(t)‘ t> 0} is the part (AT ,D(A )) of A inY.

Lemma 6. The operator A

with D(Appy, o)) = {ue D(A) "bDL,(Q),Au e

[bDL, (©)

bDL, (Q)} is the infinitesimal generator of an analytic semigroup of contractions on bDL, (€2).

Proof. From Theorem 7.3.6 in [11] A is the infinitesimal generator of an analytic semigroup

of contractions on L2 (Q). Then A is also the infinitesimal generator of an analytic semigoup of
contractions on L, (€2). Let{T (t)|t 2 0} be the restriction of the analytic semigroup generated
byAon L,(Q)to the real axis . {T (t)|t > O}is a C,semigroup of contractions by Theorem
7.2.5 and Theorem 3.1.1in [11].  We have already noted that bDL, (Q) is a closed subspace of
L,(Q) and is also a Hilbert space. We want to show that bDL,(QQ) is T (t),., —invariant.

For every UeCq(Q), div bu=0 and lep(A)NnZ,={1:9-7 < argl <

7r—l9,|ﬂ| >r}we have (Al —A)[R(l : A)bu]:bu where 2., is the same as in the proof of
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lemma 3. Since bR(1:A= b.[:e‘*‘T (t)udt = J.:e‘”T (to(x)udt= R(A:A)u. From
Lemma 3 it follows that div bR(A:A)u=div(R(1:A)bu)=0. Since R(A:A)is bounded
and so is continuous . Hence R(A4,A)u e C; . That is to say that Cgyis R(A:A)-invariant for
Ae p(A)NZ,. From Theorem 2.5.2 (c) in [11] it follows that p(A) D R", and so

p(A)NZ,; D {ﬂ A2 r}. Hence Cgy is R(A:A) -invariant for every A>r. Let

u bDL,(€2) then there exists a sequence U, such that limu, =uand U, €Cg, for

nN—oo

n=12,... Hence R(4,A)u, eCg, and
limR(4:A)u, =R(4:A)u.
Therefore R(A: A)u e bDL, (Q) for every A>r. It follows that bDL,(€2) is R(1:A)

-invariant for every A >Tr. Now the Theorem 4.5.1 in [11] implies that bDL,(€2)is T (t),.o —

invariant. From Lemma 4 and Lemma 5 it follows that A‘DDLZ @) is the infinitesimal generator of

the C, semigroup {T(’[)‘bDL2 o 2 O} of contractions on bDL, (€2).

We will prove that {T(t)‘bDLz @) t> 0} can also be extended to an analytic semigroup on
bDL,(€2). Suppose that A€ p(A), ie. there exists R(A:A) from L,(QQ) into D(A).

Then for any U €bDL,(Q) < L,(€2), we have
(Al =AR(A:Au=u and R(A:AYA —A)=u. ©)

Thus the formula (9) becomes

(A = Ao, ) R(A1A) o U=t 30 R(A1A) o o) (A=A o JU=U

Hence (/ﬂ ~ Ao, )R(/% : A)‘bDLZ(Q) =1 and R(ﬂ : A)‘bDLZ(Q) (/“ _A\bDLZ(Q)): I. We get
From the formula (10) and Theorem 2.5.2(¢c) in [11] we have

PApi ) D P(A) DE = {4 :]arg A(7 + 5} {0}

(10)

where 0<9 <7}, Thus, for A€X, Al —A‘bDLZ(Q) is invertible. From Theorem 2.5.2(c) in
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[11] we have for A €X,A#0

HR(A : A‘bDLZ(Q)H = Sup HR(}L : A‘bDLZ(Q)|uH

uebDL, (Q)

HquDLz(Q) =1

M

< SUp) ”R(/1 : A)u” - ”R(/I' A)”B(LZ(Q),LZ(Q)) < m

uel, (@

ol 2

I

Now Theorem 2.5.2(c) in [11] implies that {T(t)‘bDL @ 1> 0} can also be extended to an
2

analytic semigroup on bDL,(€2). Therefor A‘bDLZ (o 18 @ infinitesimal generator of an analytic

semigroup of contraction on PDL, (€2) .We always denote A by Ain the follows. O

|bDL, ()

Since bDL, (€2) = DL, (€2) in the case b is a constant. So we have

Corollary 1. The operator Ais the infinitesimal generator of an analytic semigroup of

contractions on DL, (Q).

Theorem 2 in [9] is similar to the above Lemma 6. Sobolevskii proved the fact that Ap =

PA generates an analytic semigroup on L2 (Q) =DL, (Q) in [17 ] . Giga gave a different proof

in [9 ]. Our proof using the theory of semigroups of bounded operators is more simple,

Lemma 7. Suppose that b e C”(€2) then DL, (Q2) = bDL, (Q).

Proof. If beC”(Q) then beW™*(Q),Vb e (DL,(Q))",so (U,Vh)=0 for every
ueCqy,(Q2) = DL,(Q), thatis

3 ob
jQ S a—Xi)dx =0.

ob %
So Z;Ui Fa 0 forevery UeCy,. Hence

divjou]= a[b“i]=z3 Dy ypy Mg

=1 ox izl@xi i izla_xi

So ueCg () and Cg () = Cy,(Q2). Therefore

DL, (Q) = Cg,, (©2) = Cg, (©2) =bDL, (2).0
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Suppose that — Ais the infinitesimal generator of an analytic semigroup T (t) on a Banach
space X. From the results of section 2.6 in [11] we can define the fraction powers A” for
O0<a<land A”is a closed linear invertible operator with domain D(A”) dense in X.
D(A”) equipped with the norm ||X||a = HA”XH is a Banach space denoted by X, . It is clear

that 0<a < 8 implies X, © X, and that the embedding of X, into X is continuous.

If—A=A and y>¥then X, X,and D((-AY )= D((-A)¥)c DL,(Q).

the embedding of D((—A)”) into D((—A)%) is continuous. If a sequence U, (N=12,

AV [i _ ; o _ . A

...) € D((-A) )’!]m||u”||DL2(Q)y =0, then !]I_To ||un 0||DL2(Q)y =0, that is !mun =0 in

D((-=A)"), and so limu, =0in D((—A)%). It follows from Proposition 1.17 in [3] that
n—oo

— Oalways implies ||un || — 0. We can prove that

= 0. Hence ||Un || DL, (),
2

lim|u, |

n—oo DL, (Q)V

DL, (©);

2

convergence in (D((-A)” ),||0||DL @ ) implies convergence in (D((_A)%)’”'”DL - ) and
2 ¥ 2 %

and ||0|| in D((—A)”) are equivalent (see p291

conversely, that is the norms |®
Y ” ”DLZ(Q)y DLZ(Q)%

Problem 8 in [7]) , therefore there exists L, >0 such that for any U e D((—A)")

H(_A)yuHDLZ Q) = ||u||DL2(Q)y < L0||u||DL2 (Q)% ' (11)

For Ue D(A) we have

(12)

”vu”DLz(Q) :”_vu”DLz(Q) :H(_A)%u ‘DLZ(Q) :”u”DLZ(Q)%'

In [9] Giga proved the following result. Suppose that 1< r<oo,n>2.

Lemma 8. Let 0<5<%|-n(1—r")/2. Then

A®v

|A~P@, Vv

<M HASU

o,r o,r

with some constant M =M (9,3, ,r), provided 6+F+w>n/2r+1/2, >0,

>0, @w+0 >1/2.

From the Lemma 8 and the formulas (11) (12) we see that if take N=3,r=2,
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60=0, 9=3/4and w=3/4, then
[Cuev)y| =[Cuev) v|
DLZ(Q)H(_A)QVH

< M'—é"“”mz @y ”V”DLz Dy

DL, (Q) L©Q ”(u ° V)V”WO*Z(Q)

<wj-0)

DL,(Q)

with some constant M for any U,V e DL,(€2). Hence we have

Lemma 9. Suppose that U, Ve DL,(Q) are velocity fields and (UeV)ve
DL, (€), then

(0o VM 0y <MJu]

DL, (Q) DLZ(Q)% ”V”DLZ(Q)% !

Assumption (F). Let X =bDL,(Q)and U be an open subset in R™ x X (0<a <1).
The function f :U — X satisfies the assumption (F) if for every (t,u)eU there is a

neighborhood V U and constants L >0, 0<8<1 suchthatforall (t,u;)eV(i=12)

3
I () = F (G u) < L(L — ] +[u - u,,). (13)
Lemma 10. ( Theorem 6.3.1 in [11]) Let — Abe the generator of an analytic semigroup

T(t) on the Banach space X =bDL,(R®) satisfying ||T(t)||£ M and assume that
Ocp(—A). If, 0<a <l and f satisfies the assumption (F) then for every initial date

(t,,U,) €U the initial value problem

%wm = f(tu(D).t (b, T]

u(ty) =u,

(14)

has a unique local solution U € C([to,tl)i X)ﬁCl((to,tl)Z X) where t, =t,(t,,u,)>t,.

In what follows we will need Banach lattice (see [1] ). A real vector space G which is
ordered by some order relation < is called a vector lattice (or Riesz space) if any two elements

f, g € Ghave a least upper bound, denoted by f v/ g, and a greatest lower bound , denoted by

f A g, and the following properties are satisfied:
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()If f<g, then f+h<g+h forall f,g,heG,
(i) If 0< f ,then O<tf forall feG and 0<teR.

A Banach lattice is a real Banach space G endowed with an ordering <such that (G, S)is
a vector lattice and the norm is a lattice norm, that is | f | < |g| implies || f || < ||g|| for f,9eG,
where | f | = f v (- 1) is the absolute value of f and ||0|| is the norm in G. In a Banach lattice
G wedefine for f €G

fr=fvo, fi=(-f)v0

The absolute value of f is |f|: f"+f and f=f"—f".

o< <g=f|<lg| =[] <]g] -
In what follows we will need the above formula .

In L*(Q) we define the order for f,g e L*(Q)

f<ge f(X)<g(x) for ae. xeQ

and  (fv@)():=max{f(x),g(x)}, (fAg)(xX):=min{f(x),g(x)}

for ae. XeQ.Then W"*(Q),*(Q), L,(Q)and DL,(Q) are all Banach lattices.

(see [1] p.148)

ou; oV,

Lemmall. Suppose that U,V € DL, (Q) are divergence free satisfying 8_I =0, 6—' =0
X X
i j

(i#]).Then(ueV)v, (veV)ue DL,(Q).

Proof. If U,V e DL, () are divergence free satisfying A _ 0, N _ 0(i # j).From
OX; OX;
[4] and [8]we have

[ueVhdx=0,[veVhdx=0 forall heW"*(Q).

That is LZS u a—thZO. Since L,(QY) is a Banach lattice and Vhe DL,(Q)" for

= o,
h er,z(Q), thenu=u"—u",u”,u” e DL,(Q),Vh =(Vh)" —(Vh)".From proposition 10.8

1
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in [1] the lattice operations Aand V are continuous, we have

. (. oh,
a_h (_) ( lim h(xl’XZ’XB)_h(XlolleX3))+
axl 4% X — X0
(Vh)+ — ﬂ — (a_xz) — ( I|m h(X1'X2’X3)_h(X17X20'X3))+
OX, 2% Xy = Xy
oh (a_xf (im0 7) =N X, o),
8X3 X3—>X30 X5 — X5
i PO X) (e % ) ) [
X1—X10 X — Xpo aXl
= lim h+(X1,X2,X3)—h+(X1,X20,X3) — oh* :V(h+),
X2 %0 Xy — Xpo OX,
I|m h+(X1’X2’X3)_h+(X1’X2’X3O) 6h+
%0 X3~ Xg9 aX3

Similarly, (Vh)" =V(h"). Wl’Z(Q) cW?o? (©) = L,(©)are all Banach spaces. h er’Z(Q)

implies h*,h™ eW"(Q), J.U eV(h")dx=0. Since Vis divergence free, Z48X =0,

% <L (i=1,2,3) for some constant L >0. We have
X

v,
) _8 are all bounded,
i

X.

0= —LJQ Z?ﬂuf (a—h)*dx < IQ (u* eV)ve(Vh) dx

—jz_l . ﬂ ah) dx<Lj Zl , a(h )dx 0

Hence J;Z U eV)ve(Vh) dx=0. Similarly, J;Z (U eV)ve(Vh) dx =0.So we have
[ @ eV)vevhix={ (ueV)ve[(Vh)" —(Vh) fix=0.

Similarly, J;z (u” eV)veVhdx =0. Therefore
jQ (Ue V)V e Vhdx = jQ (U* —u")eV)veVhdx = jQ u* .V)v-Vhdx—jQ (U”eV)veVhdx=0

and so (U e V)v € DL, (Q). Similarly (veV)u e DL,(€2). O
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(3)The solutions of lake equations

Now we study the viscous lake equations (2). In the following proof of Theorem 1 we will

need valuation for nonlinear term (U®V)u. Lemma 9 gives a good valuation for (UeV)Uin
DL, (€2).But we don not know that whether this valuation is established in bBDL,(€2). From
lemma 7 we see that if beC”(Q) then DL,(€2) = bDL,(€2). Therefore we can consider the
solution of (2) in the state space DL, (€2) and use lemma 9.

A function U which is differentiable almost everywhere on [ B T] such thatU' e
Ll[O,T : DLZ(Q)] is called a strong solution of the initial value problem (2) if U(0)=uU,and

U satisfies (2).

Let H([O,T]; DL, (Q?) %) denote the space of all Holder continuous functionsU(t) on

[O,T] with different exponents in (0, ] and with smooth functions values U(t) satisfying

ou; o
a—' =0 (i # J) in the Banach space DL, (€2) /. From the formula (4) we see that these functions
X
j

values are all divergence free. Then from lemma 11 for anyu € H{[0,T}; DL,(Q),, Jand any
t,t, €[0,T], (u(t)*V)u(t,) € DL,(€); and for anyu,,u, € H{[0, T} DL,(Q), )and any
te[0,T], (uy(t)eV)u,(t) € DL,(Q). In the following we will use these facts. The bilinear
form (V(t) e V)u(t) on DL, (), takes value in DL, ().

Let U, (t,X) = (k. k,, k) (te[0,T] xeQ, k €R,i=123). Then u, € H([0,T]
:DL,(Q),) for all k,K,k;eR and all te[0,T] Suppose that u(x)=
(U (%), U, (%,),u5(%5)) € DLZ(Q)%With smooth U, (X)(1=12,3). Letu(t,x) =u(x)forte

[O,T].Thenu(t, X) e H ([O,T]; DL, (Q?) }/2) Hence H ([O,T]; DL, (Q?) %)is not empty. Consider
the graph
G:={tu():te(0,T),vue H([0, T} DL,(Q),

1

do0i:10.20944/preprints202111.0139.v1
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Take the open kernel U =G°of G in (0,T)xDL,(Q) y- Then U is an open subset of
(0,T)xDL,(Q) y-It is clear that Gis not empty, and so U is also not empty. F(t,u(t))
=—(ueV)uisa function: U — DL, (€2).

Theorem 1. The initial value problem (2) for viscous lake equations has a unique local strong
solution if the initial value (t,,uU,) €U, i.e.,u, =U(t,) for some Holder continuous function U
on [O,T]with smooth function value Uu(t) € DL,(Q) 4 satisfying O ;U; = 0(i # j) andb(X) €
C”(Q).

Proof. We will find that by incorporating the divergence-free condition, we can remove the

pressure term from our equation. (see p.271%in [4], p. 234 and p.239,in [12] ) In fact, from
DL, (Q)" = {Vh;heW*?(Q)} we see that VpeDL,(Q)" and so PVp=0. For Ue
DL, (€2) we have Au € DL, (Q) because to Lemma 6. Hence by applying P to the equation (2)
we have PAU=AU. It follows from (UeV)u €DL,(Q2) that P(ueV)u=(ueV)u.

Therefore we can first rewrite (2) into an abstract initial value problem on DL, ()

?j—l::AU+F(t,U(t))’t€(to'T]

u‘t:tozuo,XeQ (15)
where F(t,u(t)) =—(ueV)u is an abstract function. From corollary 1 A is the infinitesimal
generator of an analytic semigroup T (t) of contraction on DL, (Q) and "T (t)” <1 0e p(A).

If u(t) is Holder continuous about t on [to T ]in DL, (Q?) 3 » then there is a constant C
and 0< # <1 such that

||u(t1,x)—u(tz,x)||DL2(R3)% <Clt, —t,]” for t,t, €[t,, T] 16)

Forany (t, Uy (t)), (t,, U, t,)) €U we have (U,(t) @ W)Uy (t), (U,(t) ® V), (t) € DL,()

and
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(U (&) @ V)uy (&) = (U (&) » VU, ()] o
<y (&)  V)uy (&) = (Uy (&) © VU, ()] e
)y (t) » V), () - (U, () VU )]
o (CACARAAICACHETA(H)! P
) —u, @) e VI ()]s,

< MLg|u, (tl)”DLZ(Q)}/Z J(u () —u, (tl))”m2 @,

+ ||u1(t1) —U, (t1)

DL, (Q)% ||U2 (tZ) DLz(Q)% )

YTE LS IS TACS R T RGO R

< MLS(“ul(tl)"DLz(Q)yz +”u2(t2)”DLZ(Q)% j

VR

Juy (&) = u, (t,)] 5, @, Ju, (t.) - u, (tl)”mz(g)% )

M0, 926,

)

= 2MLLu, () — U, (&), ot 2MLELC, It —t,|”.

- DL, (Q
(106 Ul +CIt

We used lemma 9 in the above third step . For any u(t,),u(t,) € DL, (€2) 3 we have
u(t) o Vu(t)-(ult,)e Vult )y, 0

<Julty)o Vult,) -t ) e VIut, N, ) + (Ut )e Vut, )~ (u(t,)e Vu(t, )
=(ult,)e VXu(t)-ult Ny, o +Ilut)-ult,)e VIu(t. ., o

<M Lé (”u(tlmm2 (Q)% ”(u (tl)_ U(t2 )mDLZ (Q)/]/2 + ||U (tl)_ u(tZ )|DL2 (Q)% ||U(t2 mDLZ(Q)% )

- ML2(Ju(t,) oven, ) ~U oy o,

SMUC(U®) oy, 0, + o e, It

DL, (Q)

DL, (Q)% + ”u (t2 )

We used the Lemma 9 in the above third step and the formula (16) in fifth step.

Suppose that (t,,U,) €U. Set

V =B, (t,,U,) :{(t,u(t)) eU :ft—t(e <Lu—u,

DL, (9),, <g}'

Then for (t,u(t)) eV,

d0i:10.20944/preprints202111.0139.v1
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={u—u, +uy| < &+ |ug|

||u||DL2(Q)% DL, (Q),, S ”u _u0||DL2(Q)}/2 +||u0||o|_2(9)}/2

DL, (@), '

Let L=c+|u L =2ML’L, L,=2MLL(C,+C), L,=Max(L, L) and

DL, (@),
L, =Min(p, £,), then from (16),(17) and (18) forall (t;,u.) eV (i=12) we have

” F (tl’ u1 (tl)) -F (tz ) uz (tz))”DLZ(Q)

< ” F (tl' Uy (tl)) -F (tl' U, (tl))”DLZ(Q) + ”F (t1' U, (tl)) -F (tz U, (tz ))||D|_2 @)

= ”(Ul (t1) b v)ul(tl) - (Uz (tl) i V)Uz (tl)”D,_2 @ + ”(uz (tl) i V)Uz (tl) - (Uz (tz) b V)uz (tz)”DL2 @)
< 2MLLu; () — U, (&), @yt 2MLELC,It, —t,|” + 2MLALCIt, —t,|°

B

< L1||U1(t1) —U, (tz)”DLz(Q)y + I-2|t1 _tz

B
< L3 (|tl _t2| ‘ + ||ul (tl) - u2(t2)||D|_2 (Q)}/ )'
2
Hence F(t,u(t)) satisfies the assumption (F), then by lemma 10 for every initial data

(t,,u,) €U the initial value problem (15) has a unique local solution

ue C(lty,t): DL,()) N CH((t,,t ): DL, () -

wheret = t'(U,). Since beC”*(Q) (19) and lemma 7 imply

ueC(lty,t'):bDL,(Q)) N C ({t,,t ): DL, (Q2)).

Changing the value of U on OQ to zero we get a unique local strong solution for (2).
Using a similar induction way as Theorem 3.9 in [9] or as Theorem 5.1 in [15] we can prove

that the solution U(t, X) € (C°° ([t,.t')x Q))3 We can also prove directly that U(t,X) is smooth.

In fact, the solution (19) of (15) is also the solution of (6). The Theorem 3.4 in [9] mean that as
long as the solution of (6) exists , this solution is smooth. From Theorem 3.4 in [9] we have the

solutionu(t, x) € (Cw([to,t')x Q))3 Substituting U(t, X) into (2) we get the solution P(t, X).
We also have p(t, x) € Cw([to,t')x Q). Since Uu(t,Xx) e (Cw([to,t')x Q))S. It follows from
u € bDL, (Q) and lemma 1 that div bu =0. So the solution U(t,X) is divergence-free. Hence

u=u(t,x), p(t,X)is the unique local strong solution of the initial value problem (2) for viscous

lake equations.[]

The Theorem 1 has the following corollary.
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Corollary 2. The Navier-Stokes initial value problem (3) has a unique local strong solution

if the initial value (t,,U,) €U.

(3) Drift homogenization

A composite is a material containing two or more finely mixed components. Composite
materials are widely used nowadays in any kind of industries. How to determine the properties of
a composite material, for example thermal, electrical or linear elastic properties of materials ? It
can be solved by the homogenization of a set of partial differential equations. The homogenization
theory allows to describe the asymptotic behaviour as & — 0 of partial differential equations of
many types. A classical problem is the elliptic Dirichlet problem

—div(A*Vu®) =T, xeQ
u®=0,xe0Q
where f is givenin H ™ () and the matrix A’ is the Y — periodic matrix.

The prescription of traditional Chinese medicine consists of a variety of Chinese herbal
medicines. Its efficacy can be obtained from the homogenization of a group of partial differential
equations controlled by each drug. The actual speed of a ship can be obtained from the

homogenization of a set of Lake equations disturbed by the ship's dynamic speed ( drift) V.. The

homogenization of PDEs is completed by the following three steps:
1. Fist Construct a set of partial differential equations satisfied by objective functions

U, (¢ — 0) and prove the existence of solutions U, ; One of the ways to solve these equations is
to change the equations into a variational formulation, that is multiplying the equation by a
arbitrary(test function)V € Hé (), then by integrating by parts. And then use lax-Milgram

theorem to prove the existence of solutions. But in this paper we will use the method of

semigroups .

2. Prove that U, strongly or weakly converge to U in some state space when & —0and U

is the homogenization value;
3. Find the equation satisfied by U . Solve this equation and get U.

Now we discuss the lake equation in a bounded domain €2 of R®, perturbed by oscillating
term (V, eV)u,, ie.

AU, +(u, eV)u, +(v,eV)u —Au, +Vp, =f  xeQtelt,T]
div(bu,)=0,xeQ
U, |tz =Ug0 X € Q
u,(t,x)=0,x e 0Q

(20)
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where the oscillations are produced by the sequence of vector-value functions V,_ which strongly
converges to some V in bDL,(Q) y when &—>0. Here Vis the scheduled ship speed and
V. is the actual approximate speed, Lim) v, (t) =v(t) inbDL,(Q) y for each te [to ,T]. In
what follows all U_,V, are velocity fields.

Theorem 2. Suppose that the smooth initial value (t,,U,,) €U for each ¢>0,b(x) €

C”(Q) v and f_(t,x)are Holder continuous in [tO,T]with exponent [ and the values in

DL, (€2),

Vé'

oL <L® and V_are smooth and satisfy —2 =O0(i # j).Then the initial
z(Q)% € axj

value problem (20) for viscous lake equations have local smooth strong solutions .

Proof. The proof is similar to Theorem 1. First we rewrite (20) into an abstract initial value

problem on the state space DL, (€2), .
2

e A, +FUO) e . T]

us‘t:tozué‘O’XEQ (21)

where F(t,u,(t)) =—(u,(t) e V)u,(t) —(v.(t)eV)u,_(t)+ f where V,_is fixed for &>0. Let
G:={t.u():te(0,T),vue H{[0,T}DL,(Q), )
Take the open kernel U =G°of Gin (0,T)xDL,(€),. Then U is an open subset of
[0.T]xDL,(Q),,. The bilinear form (veV)u on H® takes value in DL,(Q). That is,
F(t,u,(t))=—(u, eV)u_+ (v, eV)u_ is a function: U — DL, (€2).
Suppose that (t;,U_,) €U. Set

V =B, (t,,U,o) = {(t,u) U tl<e<ifu-ug,

<

Let L= 8+||u0||DL2(Q)l, L = 2|\/|L5L. Similarly to Theorem 1. from (16),(17) and (18) for any
2

(t,u;)eV(i=12) wehave

d0i:10.20944/preprints202111.0139.v1
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IF (U, (6)) = Ft U, 8o

<[ (U1 () @ VU (1) = (U, (6) @ VU, ()] o ) + (U (6) @ VU, (6) = (U, (8) @ VU, (6)]5,
(V, (&) # VDU (6) = (v, (6) @ V)U ()] o+, (0) VDU () = (v, (62) @ VU (6] o

(v, (t;) * VU (&) = (v, (t,) e VIU,, (&) |5 oy +II T (8) = T ()]0
SZM%Luﬂ@yﬂﬂaghwm%+4M%LQm—gf

(v, (t) V(U (1) = Us (6Dl oy +ILCV, (0) = (v (D)o b, ()

(v, (t) # V)(U1 (6) = U2 (&) oy I Fo (0) = Fo ()

B
< 2MUL0 (6)~Uuo ()], +AMLLCE 1)

+|

+|

+|

+|

+M Lé vV, (tl)”mz(g)y ”ual (t)—u,(t, )”DLZ(Q)}/ +M Lé v, (L) -V, (tZ)”DLz(Q)}/ ”ufl (tZ)”DLz(Q)y
+ ML?J Vg (t2)| DL, (Q)}/ ( ugl (tZ) - usl(tl)| DL, (Q)}/ + ugl(tl) - usZ (t2 )| DL, (Q)}/ ) + fg (tl) - fg (t?—)”DLZ(Q)
<MLL () = (0o, + ML -t

+MLLCJt, —t,|” + MLALC,|t, —t,|” + ML2L°(C,Jt, -t,|” +

ué’l(tl) - ué’Z (t2)||DL2 (Q)}/ )
+Cylt, -,
<(2MLL+MLEL%)

|ﬁ

|/5'

%AU—%AEMM@%+QE—E
<Lt —t|" +Ju, &) —u, ()], !

where C, = Max(4ML;LC,, ML:L°C,,ML:LC,,ML2L°C,,C,), L, = Max(ML;L+C,).
Hence F(t,u(t)) satisfies the assumption (F), then by lemma 10 for the initial data

(t,,u,) €U the initial value problem (21) has a unique smooth local strong solution

u, € C([t,.t,): DL, (€2)) nC*((t,.t,) : DL, (). 22)
Since b e C™ () (22) and lemma 7 imply

u, € C([t,,t,):bDL, (€2)) N C*((t,,t,) : DL, (X))
Similarly to Theorem 1 we get smooth strong solutions U_and p, for £>0.01

Theorem 3. Suppose that Iing v, (t) =v(t)in bDL, (Q)% for each te [tO,T]. Then there

exists U(t) e bDL,(€2), such that Iirrg u,(t)=u(t)in bDL, (Q)% foreach te [to,tl].


https://doi.org/10.20944/preprints202111.0139.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2021 d0i:10.20944/preprints202111.0139.v1

Proof. For each fixed &>0 let Y,_(t) be the fixed point in the proof of Theorem 6.3.1 in
[11]. Then
Sy,
1
lim (Ca)ty, ev)(-a)ty, |- lim| > (-A)Fy, Ao
1
Zi3:1 (_A)_% Y %jyga

1 6(I|m Ye1)

> (=AY 2|lmya( A)*
= 22 A) lim y, () “"””
S ) Himy, (-a) TR a“"““

. lim((-4) Y, #V)(-4) Y, = ((-4) *lim y, #V)(-4) Flim y,.

Similarly, im(v, s V)v, =(limv, e V)limv..

From (3.10)in [11] we have
O =TOCA) U+ [ CATE-9)(A)y, *V)A) Py, + (v, Vv s
V. O-TOCA U - [ (A TE-5)(-2) . () V)(-) Hy, (5)ds

= f (—A)%T (t—s)(v,(s)eV)v, (s)ds

(23)

Since (—A)%T (t—s) is bounded by Theorem 2.16.13(c) in [11], hence the below of (23) has a

limit when & —>0 by
Theorem 7.16 in [13].

~lim | t (=A)*T (t—s)(v,(s) ® V)V_ (s)ds
=] t (~A) T (t-s)(limv, (s) s V) limv, (s)ds
=] t (=A)*T (t—s)(v(S) ® V)V(s)ds
Therefor the above of (23) also has a limit and so there exists im y, (t) = y(t). Otherwise,

V. (A0 and [ (A TE-5)((-A) Y. (5)V)(-4)F Y, ()ds areal

unbounded or oscillatory, and they cannot be offset, inducing the above of (23) unbounded or

oscillating, a contradiction.

Since U, (t) = (—A)_% Y. (t), so there exists limit
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limu, (t) = im(-4) *y, (1) = (-4) * lim y, (t) = (-4) * y(t) = u(t)
for te [to,tl]. O
Theorem 4. Assume that Iirr(l) v, :V,ling f,=fin BbDL,(Q) and there exists pe

C”([ty, T ]x ) such that |‘iIT3 Vp, =Vp, then U, p satisfies

ou+UueV)u+(veV)u—Au+Vp=f
div(bu) =0,x € Q
U‘t:tf Uy X €

u(t,x) =0,x € 0Q (24)

Proof. From theorem 3 Ll_rg v, (t) = v(t) implies LI_F)T(]) u, (t) =u(t),ie. LI_I’)T(]) u, (t)— u(t)||bDL2 @ =

0 for each te[tO,T].This strong convergence is uniform for X € Q2. Now by using similar

Theorem 7.11 in [13] we have

(1) tim e i im YO 70E)
-0 ot —t

-0 t>t

ug(t)_ug(t‘) = lim U(t)—U(t) :a_u
t—t ot t-t ot

(2) Let u,=(u,,U,,Uz),u=(,u,u,).

Iim%:lim lim Ua-(Xi)—Ua-(Xio) = lim lim u.si(xi)_ua'(xio) = lim M:%

£—0 8Xi £—0 X —>Xig Xi — Xio X —>Xio €0 Xi - XiO X —Xio Xi — Xio axi
. . . ... Ouyg  ou :
for 1=1,2,3. Thisis to say that limu, =u implies lim =—2for 1=1,2,3.
£-0 &0 axi 6Xi
au, auy
o, o au, o (%) =5 (%)
lim ——2 = lim — —4 = lim lim 2% % 1
£—0 axi £—0 6Xi axi £—0 X —>Xio X — Xig
ou; ouy ou; ou;
() =5 (o) (6 — 5 (%) %y,
— ||m ||m X i X i — ||m X i OX; i _ 2,
X —Xig €0 X, — Xio Xi—Xio X; — X0 aXi
: . . ;o :
for 1=1,2,3.This to say that limu, =Uimplies lim——*=——"for i=123. limAu, =
&0 &0 6Xi X e—>0

o°u. o°u. ] _
ngzajzl 0 ? - Zajzl 2I =Au; for 1=123. So |ILT?J Au, = Au.
£ Xj GXJ- .

(3)For 1=12,3
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U (%) = U, (%i0)

. U.(X)—U_(X . . .
=& =lim[u, lim 3 (6) = U5 (%o) ]=limu, lim lim
e—0 axi £-0 Xi—>Xig X — Xig £—0 £—0 X —Xig X — Xio
im tim Y G0 UG iy WO U (%) O
' x—Xig £0 X — Xig X —>Xi X, — Xio : 8Xi
And so
3 augl 2 6u1
U, Zn 1ua' ox; Zi:lui .
gy | _ 3 ou, | _
lim(u, o V), —I;gg[z_l a j =t 3,0, %< 0 8= eV

u 3U53
€3 i=1 u‘ﬂ aXl

Similarly, lim(v, ¢V)u, =(veV)u.

U
Eha i

(4) Now from (1),(2),(3) and the equations (20) we take limit and get

Ou+(ueVu+(veV)u—Au+Vp= Iirrg(atug +(u, eV,

It is clear that div bu, =0 for &>0 implies
div bu =div lim bu_ = lim div bu,
&0 -0

u‘t:to =

. =limu_,
£—0

u(t, x)= lim u, (t,

:uo,

+(v, eV)u, —Au, +Vp,)=

:O,

X): 0 when X € 0Q.

Therefore U, P satisfies (24).

Now we consider a special case (stationary Stokes equation). In [1] M.Braine and P.Gerard
studied a scalar and a two-dimensional stationary Stokes equations perturbed by a drift in the
sense of distributions. Under higher integrability conditions the Tartar approach based on the
oscillations test functions method applies and leads to a limit equation with an extra zero-order
term. However, the lack of integrability makes difficult the direct use of the Tartar method for the
three-dimensional Stokes equations. But we can use the semigroup method to study the

three-dimensional stationary Stokes equation in the usual sense bDL, (€2).
When a ship is sailing in the lake, the set dynamic speed is V. Due to the operation error, the

v, -V =0.

€ bDL, (Q)

actual dynamic speed is V_(t,X), V. infinitely close to V, that is |iIT(\)
&

How to calculate the relative speed of the ship, the speed of the combination of dynamic speed and
lake speed? In order to keep the ship's speed stable, it is assumed that the ship's dynamic force

ou
f_(t,X) makes the time-varying acceleration Eg and the spatial position dependent

migration acceleration (U, ® V)U_ to be zero. The transfer acceleration with the change of space
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position produced by ship dynamic force f_(t,X) is (v, ®V)u,_. This acceleration (V, V)

U, counteracts the accelerations produced by the viscous force AU and the pressure gradient

ou
force Vp,such that —==0and (U, #V)u, =0. This is the result of zero resultant force of
ot

f,,Au_and Vp,.The relative speed of the ship is the homogenization of U_, U= limu,. Our

£—0

mathematical problem is as following

(v,eV)u, —Au, +Vp, =1 ,xeQte(t,T]
div(bu,)=0,xeQ

2
u,(t,x)=0,x€0Q | ()

From Theorem 2, Theorem 3 and Theorem 4 we have the following corollaries

Corollary 3. Suppose that for each & >0, (t,,u,,)€U,b(x)eC”(Q2), v, f, are

Holder continuous in DL, (Q) y and in DL, (QQ) respectively with exponent S, and

vV, ('[)”DL2 @, <L’ (te [to ,T]) for some constant L°, Then the viscous lake equations (25) has a
2

unique smooth local strong solutions .

Corollary 4. Suppose that Iing v, =VinbDL,(€2) . Then there exists UebDL,(€),
£ 2
such that Iing u, =uin bDL,(Q).

Corollary 5. Assume that limv, =v,lim f_ = f and there exists p € bDL, () such that

-0 -0

Iirr(l) Vp, =Vp, then U, p satisfies

—Au+(veV)u+Vp="1,xeQ
div(bu) =0,x e Q
u=0,xeoQ
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