
Metric Dimension in fuzzy(neutrosophic) Graphs-III

Henry Garrett

Independent Researcher

DrHenryGarrett@gmail.com

Twitter’s ID: @DrHenryGarrett | c©DrHenryGarrett.wordpress.com

Abstract

In this study, the term dimension is introduced on fuzzy(neutrosophic) graphs. The
classes of these specific graphs are chosen to obtain some results based on dimension.
The types of crisp notions and fuzzy(neutrosophic) notions are used to make sense
about the material of this study and the outline of this study uses some new notions
which are crisp and fuzzy(neutrosophic).
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1 Background 1

To clarify about the definitions, I use some examples and in this way, exemplifying has 2

key role to make sense about the definitions and to introduce new ways to use on these 3

models in the terms of new notions. The concept of complete is used to classify specific 4

graph in every environment. To differentiate, I use an adjective or prefix in every 5

definition. Two adjectives “fuzzy” and “neutrosophic” are used to distinguish every 6

graph or classes of graph or any notion on them. 7

G : (V,E) is called a crisp graph where V is a set of objects and E is a subset of 8

V × V such that this subset is symmetric. A crisp graph G : (V,E) is called a fuzzy 9

graph G : (σ, µ) where σ : V → [0, 1] and µ : E → [0, 1] such that µ(xy) ≤ σ(x) ∧ σ(y) 10

for all xy ∈ E. A crisp graph G : (V,E) is called a neutrosophic graph G : (σ, µ) 11

where σ = (σ1, σ2, σ3) : V → [0, 1] and µ = (µ1, µ2.µ3) : E → [0, 1] such that 12

µ(xy) ≤ σ(x) ∧ σ(y) for all xy ∈ E. A crisp graph G : (V,E) is called a crisp 13

complete where ∀x ∈ V, ∀y ∈ V, xy ∈ E. A fuzzy graph G : (σ, µ) is called fuzzy 14

complete where it’s complete and µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A neutrosophic 15

graph G : (σ, µ) is called a neutrosophic complete where it’s complete and 16

µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A crisp graph G : (V,E) is called a crisp strong. 17

A fuzzy graph G : (σ, µ) is called fuzzy strong where µ(xy) = σ(x) ∧ σ(y) for all 18

xy ∈ E. A neutrosophic graph G : (σ, µ) is called a neutrosophic strong where 19

µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A distinct sequence of vertices v0, v1, · · · , vn in a 20

crisp graph G : (V,E) is called crisp path with length n from v0 to vn where 21

vivi+1 ∈ E, i = 0, 1, · · · , n− 1. If one edge is incident to a vertex, the vertex is called 22

leaf. A path v0, v1, · · · , vn is called fuzzy path where 23

µ(vivi+1) > 0, i = 0, 1, · · · , n− 1. A path v0, v1, · · · , vn is called neutrosophic path 24

where µ(vivi+1) > 0, i = 0, 1, · · · , n− 1. A path v0, v1, · · · , vn with exception of v0 and 25
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vn in a crisp graph G : (V,E) is called crisp cycle with length n for v0 where v0 = vn. 26

A cycle v0, v1, · · · , v0 is called fuzzy cycle where there are two edges xy and uv such 27

that µ(xy) = µ(uv) =
∧

i=0,1,··· ,n−1 µ(vivi+1). A cycle v0, v1, · · · , v0 is called 28

neutrosophic cycle where there are two edges xy and uv such that 29

µ(xy) = µ(uv) =
∧

i=0,1,··· ,n−1 µ(vivi+1). A set is n-set if its cardinality is n. A fuzzy

Table 1. Crisp-fying, Fuzzy-fying and Neutrosophic-fying

Crisp Graphs Fuzzy Graphs Neutrosophic Graphs
Crisp Complete Fuzzy Complete Neutrosophic Complete
Crisp Strong Fuzzy Strong Neutrosophic Strong
Crisp Path Fuzzy Path Neutrosophic Path
Crisp Cycle Fuzzy Cycle Neutrosophic Cycle

30

vertex set is the subset of vertex set of (neutrosophic) fuzzy graph such that the 31

values of these vertices are considered. A fuzzy edge set is the subset of edge set of 32

(neutrosophic) fuzzy graph such that the values of these edges are considered. Let G be a 33

family of fuzzy graphs or neutrosophic graphs. This family have fuzzy(neutrosophic) 34

common vertex set if all graphs have same vertex set and its values but edges set is 35

subset of fuzzy edge set. A (neutrosophic) fuzzy graph is called fixed-edge 36

fuzzy(neutrosophic) graph if all edges have same values. A (neutrosophic) fuzzy 37

graph is called fixed-vertex fuzzy(neutrosophic) graph if all vertices have same 38

values. A couple of vertices x and y is called crisp twin vertices if either N(x) = N(y) 39

or N [x] = N [y] where ∀x ∈ V, N(x) = {y| xy ∈ E}, N [x] = N(x) ∪ {x}. Two vertices t 40

and t′ are called fuzzy(neutrosophic) twin vertices if N(t) = N(t′) and 41

µ(ts) = µ(t′s), for all s ∈ N(t) = N(t′). For using material look at [1–15].

Table 2. Crisp-fying, Fuzzy-fying and Neutrosophic-fying

Crisp Vertex Set Fuzzy Vertex Set Neutrosophic Vertex Set
Crisp Edge Set Fuzzy Edge Set Neutrosophic Edge Set
Crisp Common Fuzzy Common Neutrosophic Common
Crisp Fixed-edge Fuzzy Fixed-edge Neutrosophic Fixed-edge
Crisp Fixed-vertex Fuzzy Fixed-vertex Neutrosophic Fixed-vertex
Crisp Twin Fuzzy Twin Neutrosophic Twin

42

2 Definitions 43

We use the notion of vertex in fuzzy(neutrosophic) graphs to define new notions which 44

state the relation amid vertices. In this way, the set of vertices are distinguished by 45

another set of vertices. 46

Definition 2.1. Let G = (V, σ, µ) be a fuzzy(neutrosophic) graph. A vertex m 47

fuzzy(neutrosophic)-resolves vertices f1 and f2 if d(m, f1) 6= d(m, f2). A set M is 48

fuzzy(neutrosophic) resolving set if for every couple of vertices f1, f2 ∈ V \M, there’s a 49

vertex m ∈M such that m fuzzy(neutrosophic)-resolves f1 and f2. |M | is called 50

fuzzy(neutrosophic) metric number of G and minM Σm∈Mσ(m) is called 51

fuzzy(neutrosophic) metric dimension of G and if fuzzy(neutrosophic) metric number of 52

set M equals fuzzy(neutrosophic) metric dimension, then M is called 53

fuzzy(neutrosophic) metric set of G. 54

Example 2.2. Let G be a fuzzy(neutrosophic) graph as figure (1). By applying Table 55

(3), the 1-set is explored which its cardinality is minimum. {f6} and {f4} are 1-set 56

which has minimum cardinality amid all sets of vertices but {f4} isn’t 57
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fuzzy(neutrosophic) resolving set and {f6} is fuzzy(neutrosophic) resolving set. Thus 58

there’s no fuzzy(neutrosophic) metric set but {f6}. f6 fuzzy(neutrosophic)-resolves all 59

given couple of vertices. Therefore one is fuzzy(neutrosophic) metric number of G and 60

0.13 is fuzzy(neutrosophic) metric dimension of G. By using Table (3), f4 doesn’t 61

fuzzy(neutrosophic)-resolve f2 and f6. f4 doesn’t fuzzy(neutrosophic)-resolve f1 and f5, 62

too.

Figure 1. Black vertex {f6} is only fuzzy(neutrosophic) metric set amid all sets of
vertices for fuzzy(neutrosophic) graph G.

63

Table 3. Distances of Vertices from sets of vertices {f6} and {f4} in fuzzy(neutrosophic)
Graph G.

Vertices f1 f2 f3 f4 f5 f6
f6 0.22 0.26 0.39 0.24 0.13 0

Vertices f1 f2 f3 f4 f5 f6
f4 0.11 0.24 0.37 0 0.11 0.24

Definition 2.3. Consider G as a family of fuzzy(neutrosophic) graphs on a common 64

vertex set V. A vertex m simultaneously fuzzy(neutrosophic)-resolves vertices f1 and f2 65

if dG(m, f1) 6= dG(m, f2), for all G ∈ G. A set M is simultaneously fuzzy(neutrosophic) 66

resolving set if for every couple of vertices f1, f2 ∈ V \M, there’s a vertex m ∈M such 67

that m resolves f1 and f2, for all G ∈ G. |M | is called simultaneously 68

fuzzy(neutrosophic) metric number of G and minσm∈V σ(m) is called simultaneously 69

fuzzy(neutrosophic) metric dimension of G and if the simultaneously 70

fuzzy(neutrosophic) cardinality of set M equals simultaneously fuzzy(neutrosophic) 71

metric dimension, then M is called simultaneously fuzzy(neutrosophic) metric set of G. 72

Example 2.4. Let G = {G1, G2, G3} be a collection of fuzzy(neutrosophic) graphs 73

with common fuzzy(neutrosophic) vertex set and a subset of fuzzy(neutrosophic) edge 74

set as figure (2). By applying Table (4), the 1-set is explored which its cardinality is 75

minimum. {f2} and {f4} are 1-set which has minimum cardinality amid all sets of 76

vertices. {f4} is as fuzzy(neutrosophic) resolving set as {f6} is. Thus there’s no 77

fuzzy(neutrosophic) metric set but {f4} and {f6}. f6 as fuzzy(neutrosophic)-resolves all 78

given couple of vertices as f4. Therefore one is fuzzy(neutrosophic) metric number of G 79

and 0.13 is fuzzy(neutrosophic) metric dimension of G. By using Table (4), f4 80

fuzzy(neutrosophic)-resolves all given couple of vertices. 81
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Figure 2. Black vertex {f4} and the set of vertices {f2} are simultaneously
fuzzy(neutrosophic) metric set amid all sets of vertices for family of fuzzy(neutrosophic)
graphs G.

Table 4. Distances of Vertices from set of vertices {f6} in Family of fuzzy(neutrosophic)
Graphs G.

Vertices of G1 f1 f2 f3 f4
f4 0.37 0.26 0.13 0

Vertices of G2 f1 f2 f3 f4
f4 0.11 0.22 0.13 0

Vertices of G3 f1 f2 f3 f4
f4 0.24 0.26 0.13 0

3 General Relationships 82

Proposition 3.1. Let G be a fuzzy(neutrosophic) path. Then every leaf is 83

fuzzy(neutrosophic) resolving set. 84

Proof. Let l be a leaf. For every given a couple of vertices fi and fj , we get
d(l, fi) 6= d(l, fj). Since if we reassign indexes to vertices such that every vertex fi and l
have i vertices amid themselves, then d(l, fi) = Σj≤iµ(fjfi) ≤ i. Thus j ≤ i implies

Σt≤jµ(ftfj) + Σj≤s≤iµ(fsfi) > Σj≤iµ(ffi) ≡ d(l, fj) + c = d(l, fi) ≡ d(l, fj) < d(l, fi).

Therefore, by d(l, fj) < d(l, fi), we get d(l, fi) 6= d(l, fj). fi and fj are arbitrary so l 85

fuzzy(neutrosophic)-resolves any given couple of vertices fi and fj which implies {l} is a 86

fuzzy(neutrosophic) resolving set. 87

Corollary 3.2. Let G be a fixed-edge fuzzy(neutrosophic) path. Then every leaf is 88

fuzzy(neutrosophic) resolving set. 89

Proof. Let l be a leaf. For every given couple of vertices, fi and fj , we get 90

d(l, fi) = ci 6= d(l, fj) = cj. It implies l fuzzy(neutrosophic)-resolves any given couple of 91

vertices fi and fj which implies {l} is a fuzzy(neutrosophic) resolving set. 92

Corollary 3.3. Let G be a fixed-vertex fuzzy(neutrosophic) path. Then every leaf is 93

fuzzy(neutrosophic) metric set, fuzzy(neutrosophic) metric number is one and 94

fuzzy(neutrosophic) metric dimension is c where c = σ(f), f ∈ V. 95

Proof. By Proposition (3.1), every leaf is fuzzy(neutrosophic) resolving set. By 96

c = σ(f), ∀f ∈ V, every leaf is fuzzy(neutrosophic) metric set, fuzzy(neutrosophic) 97

metric number is one and fuzzy(neutrosophic) metric dimension is c. 98

Proposition 3.4. Let G be a fuzzy(neutrosophic) path. Then a set including every 99

couple of vertices is fuzzy(neutrosophic) resolving set. 100

Proof. Let f and f ′ be a couple of vertices. For every given a couple of vertices fi and 101

fj , we get either d(f, fi) 6= d(f, fj) or d(f ′, fi) 6= d(f ′, fj). 102
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Corollary 3.5. Let G be a fixed-edge fuzzy(neutrosophic) path. Then every set 103

containing couple of vertices is fuzzy(neutrosophic) resolving set. 104

Proof. Consider G is a fuzzy(neutrosophic) path. Thus by Proposition (3.4), every set 105

containing couple of vertices is fuzzy(neutrosophic) resolving set. So it holds for any 106

given fixed-edge path fuzzy(neutrosophic) graph. 107

Proposition 3.6. Let G be a fuzzy(neutrosophic) graph. An (k − 1)-set from an k-set 108

of fuzzy(neutrosophic) twin vertices is subset of a fuzzy(neutrosophic) resolving set. 109

Proof. If t and t′ are fuzzy(neutrosophic) twin vertices, then N(t) = N(t′) and 110

µ(ts) = µ(t′s), for all s ∈ N(t) = N(t′). 111

Corollary 3.7. Let G be a fuzzy(neutrosophic) graph. The number of 112

fuzzy(neutrosophic) twin vertices is n− 1. Then fuzzy(neutrosophic) metric number is 113

n− 2. 114

Proof. Let f and f ′ be two vertices. By supposition, the cardinality of set of 115

fuzzy(neutrosophic) twin vertices is n− 2. Thus there are two cases. If both are 116

fuzzy(neutrosophic) twin vertices, then N(f) = N(f ′) and µ(fs) = µ(f ′s′), ∀s ∈ N(f), 117

∀s′ ∈ N(f ′). It implies d(f, t) = d(f, t) for all t ∈ V. Thus suppose if not, then let f be 118

a vertex which isn’t fuzzy(neutrosophic) twin vertices with any given vertex and let f ′ 119

be a vertex which is fuzzy(neutrosophic) twin vertices with any given vertex but not f. 120

By supposition, it’s possible and this is only case. Therefore, any given distinct vertex 121

fuzzy(neutrosophic)-resolves f and f ′. Then V \ {f, f ′} is fuzzy(neutrosophic) resolving 122

set. It implies fuzzy(neutrosophic) metric number is n− 2. 123

Corollary 3.8. Let G be a fuzzy(neutrosophic) graph. The number of 124

fuzzy(neutrosophic) twin vertices is n. Then G is fixed-edge fuzzy(neutrosophic) graph. 125

Proof. Suppose f and f ′ are two given edges. By supposition, every couple of vertices 126

are fuzzy(neutrosophic) twin vertices. It implies µ(f) = µ(f ′). f and f ′ are arbitrary so 127

every couple of edges have same values. It induces G is fixed-edge fuzzy(neutrosophic) 128

graph. 129

Corollary 3.9. Let G be a fixed-vertex fuzzy(neutrosophic) graph. The number of 130

fuzzy(neutrosophic) twin vertices is n− 1. Then fuzzy(neutrosophic) metric number is 131

n− 2, fuzzy(neutrosophic) metric dimension is (n− 2)σ(m) where m is 132

fuzzy(neutrosophic) twin vertex with a vertex. Every (n− 2)-set including 133

fuzzy(neutrosophic) twin vertices is fuzzy(neutrosophic) metric set. 134

Proof. By Corollary (3.7), fuzzy(neutrosophic) metric number is n− 2. By G is a 135

fixed-vertex fuzzy(neutrosophic) graph, fuzzy metric dimension is (n− 2)σ(m) where m 136

is fuzzy(neutrosophic) twin vertex with a vertex. One vertex doesn’t belong to set of 137

fuzzy(neutrosophic) twin vertices and a vertex from that set, are out of fuzzy metric set. 138

It induces every (n− 2)-set including fuzzy(neutrosophic) twin vertices is fuzzy metric 139

set. 140

Proposition 3.10. Let G be a fixed-vertex fuzzy(neutrosophic) graph such that it’s 141

fuzzy(neutrosophic) complete. Then fuzzy(neutrosophic) metric number is n− 1, 142

fuzzy(neutrosophic) metric dimension is (n− 1)σ(m) where m is a given vertex. Every 143

(n− 1)-set is fuzzy(neutrosophic) metric set. 144

Proof. In fuzzy(neutrosophic) complete, every couple of vertices are twin vertices. By G 145

is a fixed-vertex fuzzy(neutrosophic) graph and it’s fuzzy(neutrosophic) complete, every 146

couple of vertices are fuzzy(neutrosophic) twin vertices. Thus by Proposition (3.6), the 147

result follows. 148

5/8

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 November 2021                   doi:10.20944/preprints202111.0142.v3

https://doi.org/10.20944/preprints202111.0142.v3


Proposition 3.11. Let G be a family of fuzzy(neutrosophic) graphs with common 149

vertex set. Then simultaneously fuzzy(neutrosophic) metric number of G is n− 1. 150

Proof. Consider (n− 1)-set. Thus there’s no couple of vertices to be 151

fuzzy(neutrosophic)-resolved. Therefore, every (n− 1)-set is fuzzy(neutrosophic) 152

resolving set for any given fuzzy(neutrosophic) graph. Then it holds for any 153

fuzzy(neutrosophic) graph. It implies it’s fuzzy(neutrosophic) resolving set and its 154

cardinality is fuzzy(neutrosophic) metric number. (n− 1)-set has the cardinality n− 1. 155

Then it holds for any fuzzy(neutrosophic) graph. It induces it’s simultaneously 156

fuzzy(neutrosophic) resolving set and its cardinality is simultaneously 157

fuzzy(neutrosophic) metric number. 158

Proposition 3.12. Let G be a family of fuzzy(neutrosophic) graphs with common 159

vertex set. Then simultaneously fuzzy(neutrosophic) metric number of G is greater than 160

the maximum fuzzy(neutrosophic) metric number of G ∈ G. 161

Proof. Suppose t and t′ are simultaneously fuzzy(neutrosophic) metric number of G and 162

fuzzy(neutrosophic) metric number of G ∈ G. Thus t is fuzzy(neutrosophic) metric 163

number for any G ∈ G. Hence, t ≥ t′. So simultaneously fuzzy(neutrosophic) metric 164

number of G is greater than the maximum fuzzy(neutrosophic) metric number of 165

G ∈ G. 166

Proposition 3.13. Let G be a family of fuzzy(neutrosophic) graphs with common 167

vertex set. Then simultaneously fuzzy(neutrosophic) metric number of G is greater than 168

simultaneously fuzzy(neutrosophic) metric number of H ⊆ G. 169

Proof. Suppose t and t′ are simultaneously fuzzy(neutrosophic) metric number of G and 170

H. Thus t is fuzzy(neutrosophic) metric number for any G ∈ G. It implies t is 171

fuzzy(neutrosophic) metric number for any G ∈ H. So t is simultaneously 172

fuzzy(neutrosophic) metric number of H. By applying Definition about being the 173

minimum number, t ≥ t′. So simultaneously fuzzy(neutrosophic) metric number of G is 174

greater than simultaneously fuzzy(neutrosophic) metric number of H ⊆ G. 175

Theorem 3.14. Fuzzy(neutrosophic) twin vertices aren’t resolved in any given 176

fuzzy(neutrosophic) graph. 177

Proof. Let t and t′ be fuzzy(neutrosophic) twin vertices. Then N(t) = N(t′) and 178

µ(ts) = µ(t′s), for all s, s′ ∈ V such that ts, t′s ∈ E. Thus for every given vertex 179

s′ ∈ V, dG(s′, t) = dG(s, t) where G is a given fuzzy(neutrosophic) graph. It means that 180

t and t′ aren’t resolved in any given fuzzy(neutrosophic) graph. t and t′ are arbitrary so 181

fuzzy(neutrosophic) twin vertices aren’t resolved in any given fuzzy(neutrosophic) 182

graph. 183

Proposition 3.15. Let G be a fixed-vertex fuzzy(neutrosophic) graph. If G is 184

fuzzy(neutrosophic) complete, then every couple of vertices are fuzzy(neutrosophic) twin 185

vertices. 186

Proof. Let t and t′ be couple of given vertices. By G is fuzzy(neutrosophic) complete, 187

N(t) = N(t′). By G is a fixed-vertex fuzzy(neutrosophic) graph, µ(ts) = µ(t′s), for all 188

edges ts, t′s ∈ E. Thus t and t′ are fuzzy(neutrosophic) twin vertices. t and t′ are 189

arbitrary couple of vertices, hence every couple of vertices are fuzzy(neutrosophic) twin 190

vertices. 191

Theorem 3.16. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 192

set and G ∈ G is a fixed-vertex fuzzy(neutrosophic) graph such that it’s 193

fuzzy(neutrosophic) complete. Then simultaneously fuzzy(neutrosophic) metric number 194
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is n− 1, simultaneously fuzzy(neutrosophic) metric dimension is (n− 1)σ(m) where m is 195

a given vertex. Every (n− 1)-set is simultaneously fuzzy(neutrosophic) metric set for G. 196

Proof. G is fixed-vertex fuzzy(neutrosophic) graph and it’s fuzzy(neutrosophic) 197

complete. So by Theorem (3.15), we get every couple of vertices in fuzzy(neutrosophic) 198

complete are fuzzy(neutrosophic) twin vertices. So every couple of vertices, by Theorem 199

(3.14), aren’t resolved. 200

Corollary 3.17. Let G be a family of fuzzy(neutrosophic) graphs with 201

fuzzy(neutrosophic) common vertex set and G ∈ G is a fuzzy(neutrosophic) complete. 202

Then simultaneously fuzzy(neutrosophic) metric number is n− 1, simultaneously 203

fuzzy(neutrosophic) metric dimension is (n− 1)σ(m) where m is a given vertex. Every 204

(n− 1)-set is simultaneously fuzzy(neutrosophic) metric set for G. 205

Proof. By fuzzy(neutrosophic) graphs with fuzzy(neutrosophic) common vertex set, G 206

is fixed-vertex fuzzy(neutrosophic) graph. It’s fuzzy(neutrosophic) complete. So by 207

Theorem (3.16), we get intended result. 208

Theorem 3.18. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 209

set and for every given couple of vertices, there’s a G ∈ G such that in that, they’re 210

fuzzy(neutrosophic) twin vertices. Then simultaneously fuzzy(neutrosophic) metric 211

number is n− 1, simultaneously fuzzy(neutrosophic) metric dimension is (n− 1)σ(m) 212

where m is a given vertex. Every (n− 1)-set is simultaneously fuzzy(neutrosophic) 213

metric set for G. 214

Proof. By Proposition (3.11), simultaneously fuzzy(neutrosophic) metric number is 215

n− 1. By Theorem (3.14), simultaneously fuzzy(neutrosophic) metric dimension is 216

(n− 1)σ(m) where m is a given vertex. Also, every (n− 1)-set is simultaneously 217

fuzzy(neutrosophic) metric set for G. 218

Theorem 3.19. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 219

set. If G contains three fixed-vertex fuzzy(neutrosophic) stars with different center, then 220

simultaneously fuzzy(neutrosophic) metric number is n− 2, simultaneously 221

fuzzy(neutrosophic) metric dimension is (n− 2)σ(m) where m is a given vertex. Every 222

(n− 2)-set is simultaneously fuzzy(neutrosophic) metric set for G. 223

Proof. The cardinality of set of fuzzy(neutrosophic) twin vertices is n− 1. Thus by 224

Corollary (3.9), the result follows. 225

Corollary 3.20. Let G be a family of fuzzy(neutrosophic) graphs with 226

fuzzy(neutrosophic) common vertex set. If G contains three fuzzy(neutrosophic) stars 227

with different center, then simultaneously fuzzy(neutrosophic) metric number is n− 2, 228

simultaneously fuzzy(neutrosophic) metric dimension is (n− 2)σ(m) where m is a given 229

vertex. Every (n− 2)-set is simultaneously fuzzy(neutrosophic) metric set for G. 230

Proof. By fuzzy(neutrosophic) graphs with fuzzy(neutrosophic) common vertex set, G 231

is fixed-vertex fuzzy(neutrosophic) graph. It’s fuzzy(neutrosophic) complete. So by 232

Theorem (3.19), we get intended result. 233
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