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Abstract

In this study, the term dimension is introduced on fuzzy(neutrosophic) graphs. The
classes of these specific graphs are chosen to obtain some results based on dimension.
The types of crisp notions and fuzzy(neutrosophic) notions are used to make sense
about the material of this study and the outline of this study uses some new notions
which are crisp and fuzzy(neutrosophic).
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1 Background 1

To clarify about the definitions, I use some examples and in this way, exemplifying has 2

key role to make sense about the definitions and to introduce new ways to use on these 3

models in the terms of new notions. The concept of complete is used to classify specific 4

graph in every environment. To differentiate, I use an adjective or prefix in every 5

definition. Two adjectives “fuzzy” and “neutrosophic” are used to distinguish every 6

graph or classes of graph or any notion on them. 7

G : (V,E) is called a crisp graph where V is a set of objects and E is a subset of 8

V × V such that this subset is symmetric. A crisp graph G : (V,E) is called a fuzzy 9

graph G : (σ, µ) where σ : V → [0, 1] and µ : E → [0, 1] such that µ(xy) ≤ σ(x) ∧ σ(y) 10

for all xy ∈ E. A crisp graph G : (V,E) is called a neutrosophic graph G : (σ, µ) 11

where σ = (σ1, σ2, σ3) : V → [0, 1] and µ = (µ1, µ2.µ3) : E → [0, 1] such that 12

µ(xy) ≤ σ(x) ∧ σ(y) for all xy ∈ E. A crisp graph G : (V,E) is called a crisp 13

complete where ∀x ∈ V, ∀y ∈ V, xy ∈ E. A fuzzy graph G : (σ, µ) is called fuzzy 14

complete where it’s complete and µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A neutrosophic 15

graph G : (σ, µ) is called a neutrosophic complete where it’s complete and 16

µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. An N which is a set of vertices, is called 17

fuzzy(neutrosophic) cardinality and it’s denoted by |N | such that 18

|N | = Σn∈Nσ(n). A crisp graph G : (V,E) is called a crisp strong. A fuzzy graph 19

G : (σ, µ) is called fuzzy strong where µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A 20

neutrosophic graph G : (σ, µ) is called a neutrosophic strong where 21

µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A distinct sequence of vertices v0, v1, · · · , vn in a 22

crisp graph G : (V,E) is called crisp path with length n from v0 to vn where 23

vivi+1 ∈ E, i = 0, 1, · · · , n− 1. If one edge is incident to a vertex, the vertex is called 24

leaf. A path v0, v1, · · · , vn is called fuzzy path where 25
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µ(vivi+1) > 0, i = 0, 1, · · · , n− 1. A path v0, v1, · · · , vn is called neutrosophic path 26

where µ(vivi+1) > 0, i = 0, 1, · · · , n− 1. Let P : v0, v1, · · · , vn be fuzzy(neutrosophic) 27

path from v0 to vn such that it has minimum number of vertices as possible, then 28

d(v0, vn) is defined as Σn
i=0µ(vi−1vi). A path v0, v1, · · · , vn with exception of v0 and vn 29

in a crisp graph G : (V,E) is called crisp cycle with length n for v0 where v0 = vn. A 30

cycle v0, v1, · · · , v0 is called fuzzy cycle where there are two edges xy and uv such that 31

µ(xy) = µ(uv) =
∧

i=0,1,··· ,n−1 µ(vivi+1). A cycle v0, v1, · · · , v0 is called neutrosophic 32

cycle where there are two edges xy and uv such that 33

µ(xy) = µ(uv) =
∧

i=0,1,··· ,n−1 µ(vivi+1). A fuzzy(neutrosophic) cycle is called odd if 34

the number of its vertices is odd. Similarly, a fuzzy(neutrosophic) cycle is called even if 35

the number of its vertices is even. A set is n-set if its cardinality is n. A fuzzy vertex

Table 1. Crisp-fying, Fuzzy-fying and Neutrosophic-fying

Crisp Graphs Fuzzy Graphs Neutrosophic Graphs
Crisp Complete Fuzzy Complete Neutrosophic Complete
Crisp Strong Fuzzy Strong Neutrosophic Strong
Crisp Path Fuzzy Path Neutrosophic Path
Crisp Cycle Fuzzy Cycle Neutrosophic Cycle

36

set is the subset of vertex set of (neutrosophic) fuzzy graph such that the values of these 37

vertices are considered. A fuzzy edge set is the subset of edge set of (neutrosophic) 38

fuzzy graph such that the values of these edges are considered. Let G be a family of 39

fuzzy graphs or neutrosophic graphs. This family have fuzzy(neutrosophic) 40

common vertex set if all graphs have same vertex set and its values but edges set is 41

subset of fuzzy edge set. A (neutrosophic) fuzzy graph is called fixed-edge 42

fuzzy(neutrosophic) graph if all edges have same values. A (neutrosophic) fuzzy 43

graph is called fixed-vertex fuzzy(neutrosophic) graph if all vertices have same 44

values. A couple of vertices x and y is called crisp twin vertices if either N(x) = N(y) 45

or N [x] = N [y] where ∀x ∈ V, N(x) = {y| xy ∈ E}, N [x] = N(x) ∪ {x}. Two vertices t 46

and t′ are called fuzzy(neutrosophic) twin vertices if N(t) = N(t′) and 47

µ(ts) = µ(t′s), for all s ∈ N(t) = N(t′). maxx,y∈V (G) |E(P (x, y))| is called diameter of

Table 2. Crisp-fying, Fuzzy-fying and Neutrosophic-fying

Crisp Vertex Set Fuzzy Vertex Set Neutrosophic Vertex Set
Crisp Edge Set Fuzzy Edge Set Neutrosophic Edge Set
Crisp Common Fuzzy Common Neutrosophic Common
Crisp Fixed-edge Fuzzy Fixed-edge Neutrosophic Fixed-edge
Crisp Fixed-vertex Fuzzy Fixed-vertex Neutrosophic Fixed-vertex
Crisp Twin Fuzzy Twin Neutrosophic Twin

48

G and it’s denoted by D(G) where |E(P (x, y))| is the number of edges on the path from 49

x to y. A couple of vertices x and y is called antipodal vertices if 50

minP (x,y) |E(P (x, y))| = D(G). For using material look at [1–15]. 51

2 Definitions 52

We use the notion of vertex in fuzzy(neutrosophic) graphs to define new notions which 53

state the relation amid vertices. In this way, the set of vertices are distinguished by 54

another set of vertices. 55

Definition 2.1. Let G = (V, σ, µ) be a fuzzy(neutrosophic) graph. A vertex m
fuzzy(neutrosophic)-resolves vertices f1 and f2 if d(m, f1) 6= d(m, f2). A set M is
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fuzzy(neutrosophic)-resolving set if for every couple of vertices f1, f2 ∈ V \M, there’s a
vertex m ∈M such that m fuzzy(neutrosophic)-resolves f1 and f2. |M | is called
fuzzy(neutrosophic)-metric number of G and

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

is called fuzzy(neutrosophic)-metric dimension of G and if

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

where M is fuzzy(neutrosophic)-resolving set, then M is called 56

fuzzy(neutrosophic)-metric set of G. 57

Example 2.2. Let G be a fuzzy(neutrosophic) graph as figure (1). By applying Table 58

(3), the 1-set is explored which its cardinality is minimum. {f6} and {f4} are 1-set 59

which has minimum cardinality amid all sets of vertices but {f4} isn’t 60

fuzzy(neutrosophic)-resolving set and {f6} is fuzzy(neutrosophic)-resolving set. Thus 61

there’s no fuzzy(neutrosophic)-metric set but {f6}. f6 fuzzy(neutrosophic)-resolves all 62

given couple of vertices. Therefore one is fuzzy(neutrosophic)-metric number of G and 63

0.13 is fuzzy(neutrosophic)-metric dimension of G. By using Table (3), f4 doesn’t 64

fuzzy(neutrosophic)-resolve f2 and f6. f4 doesn’t fuzzy(neutrosophic)-resolve f1 and f5, 65

too.

Figure 1. Black vertex {f6} is only fuzzy(neutrosophic)-metric set amid all sets of
vertices for fuzzy(neutrosophic) graph G.

66

Table 3. Distances of Vertices from sets of vertices {f6} and {f4} in fuzzy(neutrosophic)
Graph G.

Vertices f1 f2 f3 f4 f5 f6
f6 0.22 0.26 0.39 0.24 0.13 0

Vertices f1 f2 f3 f4 f5 f6
f4 0.11 0.24 0.37 0 0.11 0.24

Definition 2.3. Consider G as a family of fuzzy(neutrosophic) graphs on a common
vertex set V. A vertex m simultaneously fuzzy(neutrosophic)-resolves vertices f1 and f2
if dG(m, f1) 6= dG(m, f2), for all G ∈ G. A set M is simultaneously
fuzzy(neutrosophic)-resolving set if for every couple of vertices f1, f2 ∈ V \M, there’s a
vertex m ∈M such that m resolves f1 and f2, for all G ∈ G. |M | is called
simultaneously fuzzy(neutrosophic)-metric number of G and

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)
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is called simultaneously fuzzy(neutrosophic)-metric dimension of G and if

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

where M is fuzzy(neutrosophic)-resolving set, then M is called simultaneously 67

fuzzy(neutrosophic)-metric set of G. 68

Example 2.4. Let G = {G1, G2, G3} be a collection of fuzzy(neutrosophic) graphs 69

with common fuzzy(neutrosophic) vertex set and a subset of fuzzy(neutrosophic) edge 70

set as figure (2). By applying Table (4), the 1-set is explored which its cardinality is 71

minimum. {f2} and {f4} are 1-set which has minimum cardinality amid all sets of 72

vertices. {f4} is as fuzzy(neutrosophic)-resolving set as {f6} is. Thus there’s no 73

fuzzy(neutrosophic)-metric set but {f4} and {f6}. f6 as fuzzy(neutrosophic)-resolves all 74

given couple of vertices as f4. Therefore one is fuzzy(neutrosophic)-metric number of G 75

and 0.13 is fuzzy(neutrosophic)-metric dimension of G. By using Table (4), f4 76

fuzzy(neutrosophic)-resolves all given couple of vertices.

Figure 2. Black vertex {f4} and the set of vertices {f2} are simultaneously
fuzzy(neutrosophic)-metric set amid all sets of vertices for family of fuzzy(neutrosophic)
graphs G.

77

Table 4. Distances of Vertices from set of vertices {f6} in Family of fuzzy(neutrosophic)
Graphs G.

Vertices of G1 f1 f2 f3 f4
f4 0.37 0.26 0.13 0

Vertices of G2 f1 f2 f3 f4
f4 0.11 0.22 0.13 0

Vertices of G3 f1 f2 f3 f4
f4 0.24 0.26 0.13 0

3 General Relationships 78

Proposition 3.1. Let G be a fuzzy(neutrosophic) path. Then every leaf is 79

fuzzy(neutrosophic)-resolving set. 80

Proof. Let l be a leaf. For every given a couple of vertices fi and fj , we get
d(l, fi) 6= d(l, fj). Since if we reassign indexes to vertices such that every vertex fi and l
have i vertices amid themselves, then d(l, fi) = Σj≤iµ(fjfi) ≤ i. Thus j ≤ i implies

Σt≤jµ(ftfj) + Σj≤s≤iµ(fsfi) > Σj≤iµ(ffi) ≡ d(l, fj) + c = d(l, fi) ≡ d(l, fj) < d(l, fi).

Therefore, by d(l, fj) < d(l, fi), we get d(l, fi) 6= d(l, fj). fi and fj are arbitrary so l 81

fuzzy(neutrosophic)-resolves any given couple of vertices fi and fj which implies {l} is a 82

fuzzy(neutrosophic)-resolving set. 83
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Corollary 3.2. Let G be a fixed-edge fuzzy(neutrosophic) path. Then every leaf is 84

fuzzy(neutrosophic)-resolving set. 85

Proof. Let l be a leaf. For every given couple of vertices, fi and fj , we get 86

d(l, fi) = ci 6= d(l, fj) = cj. It implies l fuzzy(neutrosophic)-resolves any given couple of 87

vertices fi and fj which implies {l} is a fuzzy(neutrosophic)-resolving set. 88

Corollary 3.3. Let G be a fixed-vertex fuzzy(neutrosophic) path. Then every leaf is 89

fuzzy(neutrosophic)-metric set, fuzzy(neutrosophic)-metric number is one and 90

fuzzy(neutrosophic)-metric dimension is c where c = σ(f), f ∈ V. 91

Proof. By Proposition (3.1), every leaf is fuzzy(neutrosophic)-resolving set. By 92

c = σ(f), ∀f ∈ V, every leaf is fuzzy(neutrosophic)-metric set, 93

fuzzy(neutrosophic)-metric number is one and fuzzy(neutrosophic)-metric dimension is 94

c. 95

Proposition 3.4. Let G be a fuzzy(neutrosophic) path. Then a set including every 96

couple of vertices is fuzzy(neutrosophic)-resolving set. 97

Proof. Let f and f ′ be a couple of vertices. For every given a couple of vertices fi and 98

fj , we get either d(f, fi) 6= d(f, fj) or d(f ′, fi) 6= d(f ′, fj). 99

Corollary 3.5. Let G be a fixed-edge fuzzy(neutrosophic) path. Then every set 100

containing couple of vertices is fuzzy(neutrosophic)-resolving set. 101

Proof. Consider G is a fuzzy(neutrosophic) path. Thus by Proposition (3.4), every set 102

containing couple of vertices is fuzzy(neutrosophic)-resolving set. So it holds for any 103

given fixed-edge path fuzzy(neutrosophic) graph. 104

4 Fuzzy(Neutrosophic) Twin Vertices 105

Proposition 4.1. Let G be a fuzzy(neutrosophic) graph. An (k − 1)-set from an k-set 106

of fuzzy(neutrosophic) twin vertices is subset of a fuzzy(neutrosophic)-resolving set. 107

Proof. If t and t′ are fuzzy(neutrosophic) twin vertices, then N(t) = N(t′) and 108

µ(ts) = µ(t′s), for all s ∈ N(t) = N(t′). 109

Corollary 4.2. Let G be a fuzzy(neutrosophic) graph. The number of 110

fuzzy(neutrosophic) twin vertices is n− 1. Then fuzzy(neutrosophic)-metric number is 111

n− 2. 112

Proof. Let f and f ′ be two vertices. By supposition, the cardinality of set of 113

fuzzy(neutrosophic) twin vertices is n− 2. Thus there are two cases. If both are 114

fuzzy(neutrosophic) twin vertices, then N(f) = N(f ′) and µ(fs) = µ(f ′s′), ∀s ∈ N(f), 115

∀s′ ∈ N(f ′). It implies d(f, t) = d(f, t) for all t ∈ V. Thus suppose if not, then let f be 116

a vertex which isn’t fuzzy(neutrosophic) twin vertices with any given vertex and let f ′ 117

be a vertex which is fuzzy(neutrosophic) twin vertices with any given vertex but not f. 118

By supposition, it’s possible and this is only case. Therefore, any given distinct vertex 119

fuzzy(neutrosophic)-resolves f and f ′. Then V \ {f, f ′} is fuzzy(neutrosophic)-resolving 120

set. It implies fuzzy(neutrosophic)-metric number is n− 2. 121

Corollary 4.3. Let G be a fuzzy(neutrosophic) graph. The number of 122

fuzzy(neutrosophic) twin vertices is n. Then G is fixed-edge fuzzy(neutrosophic) graph. 123
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Proof. Suppose f and f ′ are two given edges. By supposition, every couple of vertices 124

are fuzzy(neutrosophic) twin vertices. It implies µ(f) = µ(f ′). f and f ′ are arbitrary so 125

every couple of edges have same values. It induces G is fixed-edge fuzzy(neutrosophic) 126

graph. 127

Corollary 4.4. Let G be a fixed-vertex fuzzy(neutrosophic) graph. The number of 128

fuzzy(neutrosophic) twin vertices is n− 1. Then fuzzy(neutrosophic)-metric number is 129

n− 2, fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is 130

fuzzy(neutrosophic) twin vertex with a vertex. Every (n− 2)-set including 131

fuzzy(neutrosophic) twin vertices is fuzzy(neutrosophic)-metric set. 132

Proof. By Corollary (4.2), fuzzy(neutrosophic)-metric number is n− 2. By G is a 133

fixed-vertex fuzzy(neutrosophic) graph, fuzzy metric dimension is (n− 2)σ(m) where m 134

is fuzzy(neutrosophic) twin vertex with a vertex. One vertex doesn’t belong to set of 135

fuzzy(neutrosophic) twin vertices and a vertex from that set, are out of fuzzy metric set. 136

It induces every (n− 2)-set including fuzzy(neutrosophic) twin vertices is fuzzy metric 137

set. 138

Proposition 4.5. Let G be a fixed-vertex fuzzy(neutrosophic) graph such that it’s 139

fuzzy(neutrosophic) complete. Then fuzzy(neutrosophic)-metric number is n− 1, 140

fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is a given vertex. Every 141

(n− 1)-set is fuzzy(neutrosophic)-metric set. 142

Proof. In fuzzy(neutrosophic) complete, every couple of vertices are twin vertices. By G 143

is a fixed-vertex fuzzy(neutrosophic) graph and it’s fuzzy(neutrosophic) complete, every 144

couple of vertices are fuzzy(neutrosophic) twin vertices. Thus by Proposition (4.1), the 145

result follows. 146

Proposition 4.6. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 147

set. Then simultaneously fuzzy(neutrosophic)-metric number of G is n− 1. 148

Proof. Consider (n− 1)-set. Thus there’s no couple of vertices to be 149

fuzzy(neutrosophic)-resolved. Therefore, every (n− 1)-set is 150

fuzzy(neutrosophic)-resolving set for any given fuzzy(neutrosophic) graph. Then it 151

holds for any fuzzy(neutrosophic) graph. It implies it’s fuzzy(neutrosophic)-resolving set 152

and its cardinality is fuzzy(neutrosophic)-metric number. (n− 1)-set has the cardinality 153

n− 1. Then it holds for any fuzzy(neutrosophic) graph. It induces it’s simultaneously 154

fuzzy(neutrosophic)-resolving set and its cardinality is simultaneously 155

fuzzy(neutrosophic)-metric number. 156

Proposition 4.7. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 157

set. Then simultaneously fuzzy(neutrosophic)-metric number of G is greater than the 158

maximum fuzzy(neutrosophic)-metric number of G ∈ G. 159

Proof. Suppose t and t′ are simultaneously fuzzy(neutrosophic)-metric number of G and 160

fuzzy(neutrosophic)-metric number of G ∈ G. Thus t is fuzzy(neutrosophic)-metric 161

number for any G ∈ G. Hence, t ≥ t′. So simultaneously fuzzy(neutrosophic)-metric 162

number of G is greater than the maximum fuzzy(neutrosophic)-metric number of 163

G ∈ G. 164

Proposition 4.8. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 165

set. Then simultaneously fuzzy(neutrosophic)-metric number of G is greater than 166

simultaneously fuzzy(neutrosophic)-metric number of H ⊆ G. 167
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Proof. Suppose t and t′ are simultaneously fuzzy(neutrosophic)-metric number of G and 168

H. Thus t is fuzzy(neutrosophic)-metric number for any G ∈ G. It implies t is 169

fuzzy(neutrosophic)-metric number for any G ∈ H. So t is simultaneously 170

fuzzy(neutrosophic)-metric number of H. By applying Definition about being the 171

minimum number, t ≥ t′. So simultaneously fuzzy(neutrosophic)-metric number of G is 172

greater than simultaneously fuzzy(neutrosophic)-metric number of H ⊆ G. 173

Theorem 4.9. Fuzzy(neutrosophic) twin vertices aren’t fuzzy(neutrosophic)-resolved in 174

any given fuzzy(neutrosophic) graph. 175

Proof. Let t and t′ be fuzzy(neutrosophic) twin vertices. Then N(t) = N(t′) and 176

µ(ts) = µ(t′s), for all s, s′ ∈ V such that ts, t′s ∈ E. Thus for every given vertex 177

s′ ∈ V, dG(s′, t) = dG(s, t) where G is a given fuzzy(neutrosophic) graph. It means that 178

t and t′ aren’t resolved in any given fuzzy(neutrosophic) graph. t and t′ are arbitrary so 179

fuzzy(neutrosophic) twin vertices aren’t resolved in any given fuzzy(neutrosophic) 180

graph. 181

Proposition 4.10. Let G be a fixed-vertex fuzzy(neutrosophic) graph. If G is 182

fuzzy(neutrosophic) complete, then every couple of vertices are fuzzy(neutrosophic) twin 183

vertices. 184

Proof. Let t and t′ be couple of given vertices. By G is fuzzy(neutrosophic) complete, 185

N(t) = N(t′). By G is a fixed-vertex fuzzy(neutrosophic) graph, µ(ts) = µ(t′s), for all 186

edges ts, t′s ∈ E. Thus t and t′ are fuzzy(neutrosophic) twin vertices. t and t′ are 187

arbitrary couple of vertices, hence every couple of vertices are fuzzy(neutrosophic) twin 188

vertices. 189

Theorem 4.11. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 190

set and G ∈ G is a fixed-vertex fuzzy(neutrosophic) graph such that it’s 191

fuzzy(neutrosophic) complete. Then simultaneously fuzzy(neutrosophic)-metric number 192

is n− 1, simultaneously fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is 193

a given vertex. Every (n− 1)-set is simultaneously fuzzy(neutrosophic)-metric set for G. 194

Proof. G is fixed-vertex fuzzy(neutrosophic) graph and it’s fuzzy(neutrosophic) 195

complete. So by Theorem (4.10), we get every couple of vertices in fuzzy(neutrosophic) 196

complete are fuzzy(neutrosophic) twin vertices. So every couple of vertices, by Theorem 197

(4.9), aren’t resolved. 198

Corollary 4.12. Let G be a family of fuzzy(neutrosophic) graphs with 199

fuzzy(neutrosophic) common vertex set and G ∈ G is a fuzzy(neutrosophic) complete. 200

Then simultaneously fuzzy(neutrosophic)-metric number is n− 1, simultaneously 201

fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is a given vertex. Every 202

(n− 1)-set is simultaneously fuzzy(neutrosophic)-metric set for G. 203

Proof. By fuzzy(neutrosophic) graphs with fuzzy(neutrosophic) common vertex set, G 204

is fixed-vertex fuzzy(neutrosophic) graph. It’s fuzzy(neutrosophic) complete. So by 205

Theorem (4.11), we get intended result. 206

Theorem 4.13. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 207

set and for every given couple of vertices, there’s a G ∈ G such that in that, they’re 208

fuzzy(neutrosophic) twin vertices. Then simultaneously fuzzy(neutrosophic)-metric 209

number is n− 1, simultaneously fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) 210

where m is a given vertex. Every (n− 1)-set is simultaneously 211

fuzzy(neutrosophic)-metric set for G. 212
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Proof. By Proposition (4.6), simultaneously fuzzy(neutrosophic)-metric number is 213

n− 1. By Theorem (4.9), simultaneously fuzzy(neutrosophic)-metric dimension is 214

(n− 1)σ(m) where m is a given vertex. Also, every (n− 1)-set is simultaneously 215

fuzzy(neutrosophic)-metric set for G. 216

Theorem 4.14. Let G be a family of fuzzy(neutrosophic) graphs with common vertex 217

set. If G contains three fixed-vertex fuzzy(neutrosophic) stars with different center, then 218

simultaneously fuzzy(neutrosophic)-metric number is n− 2, simultaneously 219

fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is a given vertex. Every 220

(n− 2)-set is simultaneously fuzzy(neutrosophic)-metric set for G. 221

Proof. The cardinality of set of fuzzy(neutrosophic) twin vertices is n− 1. Thus by 222

Corollary (4.4), the result follows. 223

Corollary 4.15. Let G be a family of fuzzy(neutrosophic) graphs with 224

fuzzy(neutrosophic) common vertex set. If G contains three fuzzy(neutrosophic) stars 225

with different center, then simultaneously fuzzy(neutrosophic)-metric number is n− 2, 226

simultaneously fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is a given 227

vertex. Every (n− 2)-set is simultaneously fuzzy(neutrosophic)-metric set for G. 228

Proof. By fuzzy(neutrosophic) graphs with fuzzy(neutrosophic) common vertex set, G 229

is fixed-vertex fuzzy(neutrosophic) graph. It’s fuzzy(neutrosophic) complete. So by 230

Theorem (4.14), we get intended result. 231

5 Antipodal Vertices 232

Proposition 5.1. Consider two antipodal vertices x and y in any given 233

fuzzy(neutrosophic) cycle. Let u and v be given vertices. Then d(x, u) 6= d(x, v) if and 234

only if d(y, u) 6= d(y, v). 235

Proof. (⇒). Consider d(x, u) 6= d(x, v). By 236

d(x, u) + d(u, y) = d(x, y) = D(G), D(G)− d(x, u) 6= D(G)− d(x, v). It implies 237

d(y, u) 6= d(y, v). 238

(⇐). Consider d(y, u) 6= d(y, v). By 239

d(y, u) + d(u, x) = d(x, y) = D(G), D(G)− d(y, u) 6= D(G)− d(y, v). It implies 240

d(x, u) 6= d(x, v). 241

Proposition 5.2. Consider two antipodal vertices x and y in any given even 242

fuzzy(neutrosophic) cycle. Let u and v be given vertices. Then d(x, u) = d(x, v) if and 243

only if d(y, u) = d(y, v). 244

Proof. (⇒). Consider d(x, u) = d(x, v). By 245

d(x, u) + d(u, y) = d(x, y) = D(G), D(G)− d(x, u) = D(G)− d(x, v). It implies 246

d(y, u) = d(y, v). 247

(⇐). Consider d(y, u) = d(y, v). By 248

d(y, u) + d(u, x) = d(x, y) = D(G), D(G)− d(y, u) = D(G)− d(y, v). It implies 249

d(x, u) = d(x, v). 250

Proposition 5.3. The set contains two antipodal vertices, isn’t 251

fuzzy(neutrosophic)-metric set in any given even fuzzy(neutrosophic) cycle. 252

Proof. Let x and y be two given antipodal vertices in any given even 253

fuzzy(neutrosophic) cycle. By Proposition (5.1), d(x, u) 6= d(x, v) if and only if 254

d(y, u) 6= d(y, v). It implies that if x fuzzy(neutrosophic)-resolves a couple of vertices, 255

then y fuzzy(neutrosophic)-resolves them, too. Thus either x is in 256
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fuzzy(neutrosophic)-metric set or y is. It induces the set contains two antipodal vertices, 257

isn’t fuzzy(neutrosophic)-metric set in any given even fuzzy(neutrosophic) cycle. 258

Proposition 5.4. Consider two antipodal vertices x and y in any given even 259

fuzzy(neutrosophic) cycle. x fuzzy(neutrosophic)-resolves a given couple of vertices, z 260

and z′, if and only if y does. 261

Proof. (⇒). x fuzzy(neutrosophic)-resolves a given couple of vertices, z and z′, then 262

d(x, z) 6= d(x, z′). By Proposition (5.1), d(x, z) 6= d(x, z′) if and only if d(y, z) 6= d(y, z′). 263

Thus y fuzzy(neutrosophic)-resolves a given couple of vertices z and z′. 264

(⇐). y fuzzy(neutrosophic)-resolves a given couple of vertices, z and z′, then 265

d(y, z) 6= d(y, z′). By Proposition (5.1), d(y, z) 6= d(y, z′) if and only if d(x, z) 6= d(x, z′). 266

Thus x fuzzy(neutrosophic)-resolves a given couple of vertices z and z′. 267

Proposition 5.5. There are two antipodal vertices aren’t fuzzy(neutrosophic)-resolved 268

by other two antipodal vertices in any given even fuzzy(neutrosophic) cycle. 269

Proof. Suppose x and y are a couple of vertices. It implies d(x, y) = D(G). Consider u 270

and v are another couple of vertices such that d(x, u) = D(G)
2 . It implies d(y, u) = D(G)

2 . 271

Thus d(x, u) = d(y, u). Therefore, u doesn’t fuzzy(neutrosophic)-resolve a given couple 272

of vertices x and y. By D(G) = d(u, v) = d(u, x) + d(x, v) = D(G)
2 + d(x, v), 273

d(x, v) = D(G)
2 . It implies d(y, v) = D(G)

2 . Thus d(x, v) = d(y, v). Therefore, v doesn’t 274

fuzzy(neutrosophic)-resolve a given couple of vertices x and y. 275

Proposition 5.6. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. Then every 276

couple of vertices are fuzzy(neutrosophic)-resolving set. 277

Proof. Let l and l′ be couple of vertices. Thus, by G is odd cycle, l and l′ aren’t 278

antipodal vertices. It implies for every given couple of vertices fi and fj , we get either 279

d(l, fi) 6= d(l, fj) or d(l′, fi) 6= d(l′, fj). Therefore, fi and fj are 280

fuzzy(neutrosophic)-resolved by either l or l′. It induces the set {l, l′} is 281

fuzzy(neutrosophic)-resolving set. 282

Proposition 5.7. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. Then 283

fuzzy(neutrosophic)-metric number is two. 284

Proof. Let l and l′ be couple of vertices. Thus, by G is odd cycle, l and l′ aren’t 285

antipodal vertices. It implies for every given couple of vertices fi and fj , we get either 286

d(l, fi) 6= d(l, fj) or d(l′, fi) 6= d(l′, fj). Therefore, fi and fj are 287

fuzzy(neutrosophic)-resolved by either l or l′. It induces the set {l, l′} is 288

fuzzy(neutrosophic)-resolving set. 289
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