Preprint
Article

Withdrawn:

Diagnosis of Diabetic Retinopathy Using Machine Learning Techniques

Altmetrics

Downloads

138

Views

231

Comments

0

This preprint has been withdrawn

This version is not peer-reviewed

Submitted:

04 November 2021

Posted:

08 November 2021

Withdrawn:

27 March 2023

Alerts
Abstract
The complication of people with diabetes causes an illness known as Diabetic Retinopathy (DR). It is very widespread among middle-aged and older people. As diabetes progresses, patients' vision may deteriorate and cause DR. People to lose their vision because of this illness. To cope with DR, early detection is needed. Patients will have to be checked by doctors regularly, which is a waste of time and energy. DR can be divided into two groups: non-proliferative (NPDR) while the other is proliferative (PDR). In this study, machine learning (ML) techniques are used to diagnose DR early. These are PNN, SVM, Bayesian Classification, and K-Means Clustering. These techniques will be evaluated and compared with each other to choose the best methodology. A total of 300 fundus photographs are processed for training and testing. The features are extracted from these raw images using image processing techniques. After an experiment, it is concluded that PNN has an accuracy of about 89%, Bayes Classifications 94%, SVM 97%, and K-Means Clustering 87%. The preliminary results prove that SVM is the best technique for early detection of DR.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated