Preprint
Article

An Effective Method for InSAR Mapping of Tropical Forest Degradation in Hilly Areas

Altmetrics

Downloads

191

Views

171

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 November 2021

Posted:

09 November 2021

You are already at the latest version

Alerts
Abstract
Current satellite remote sensing methods struggle to detect and map forest degradation, a critical issue as it is likely a major and growing source of carbon emissions and biodiveristy loss. TanDEM-X InSAR phase height (hϕ) is a promising variable for measuring forest disturbances, as it is closely related to mean canopy height, and thus should decrease if canopy trees are removed. However, previous research has focused on relatively flat terrain, despite the fact that much of the worlds’ remaining tropical forests are found in hilly areas, and this inevitably introduces artifacts in sideways imaging systems. In this paper, we find a relationship between hϕ and aboveground biomass change in four selectively logged plots in a hilly region of central Gabon. We show that minimising the level of multilooking in the interferometric processing chain strengthens this relationship, and that degradation estimates across steep slopes in the surrounding region are improved by selecting data from the most appropriate pass directions on a pixel-by-pixel basis. This shows that TanDEM-X InSAR can measure the magnitude of degradation, and that topographic effects can be mitigated if data from multiple SAR viewing geometries are available.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated