Preprint
Article

Machine Learning in Apache Spark Environment for Diagnosis of Diabetes

Altmetrics

Downloads

371

Views

345

Comments

0

Submitted:

09 November 2021

Posted:

10 November 2021

You are already at the latest version

Alerts
Abstract
Disease-related data and information collected by physicians, patients, and researchers seem insignificant at first glance. Still, the same unorganized data contain valuable information that is often hidden. The task of data mining techniques is to extract patterns to classify the data accurately. One of the various Data mining and its methods have been used often to diagnose various diseases. In this study, a machine learning (ML) technique based on distributed computing in the Apache Spark computing space is used to diagnose diabetics or hidden pattern of the illness to detect the disease using a large dataset in real-time. Implementation results of three ML techniques of Decision Tree (DT) technique or Random Forest (RF) or Support Vector Machine (SVM) in the Apache Spark computing environment using the Scala programming language and WEKA show that RF is more efficient and faster to diagnose diabetes in big data.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated