Preprint
Article

Cancer Diagnosis of Microscopic Biopsy Images Using Social Spider Optimization Tuned Neural Network

Altmetrics

Downloads

203

Views

153

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 November 2021

Posted:

15 November 2021

You are already at the latest version

Alerts
Abstract
One of the most dangerous diseases that threaten people is Cancer. Cancer if diagnosed in earlier stages can be eradicated with its life threatening consequences. In addition, accuracy in prediction plays a major role. Hence, developing a reliable model that contributes much towards the medical community in early diagnosis of Biopsy images with perfect accuracy come to the scenario. The article aims towards development of better predictive models using multi-variate data and high-resolution diagnostic tools in clinical cancer research. This paper proposes the social spider optimization (SSO) algorithm tuned neural network to classify microscopic biopsy images of cancer. The significance of the proposed model relies on the effective tuning of the weights of the NN classifier by the SSO algorithm. The performance of the proposed strategy is analysed with the performance metrics, such as accuracy, sensitivity, specificity, and MCC measures, and are attained to be 95.9181%, 94.2515%, 97.125%, and 97.68% respectively, which shows the effectiveness of the proposed method in effective cancer disease diagnosis.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated