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1. Introduction
Emergence of spacetime geometry from underlying (Planck scale) discrete structures has being

considered recently from different approaches such as entropic gravity [1,2], spin foams [3–5],
causal dynamical triangulation [6,7], causal sets [8,9] and multiway hypergraph systems [10–13].
But there is no clear solution to the problem and we know little about the emergence of matter, in
terms of particle and fields properties [14], especially in an unified framework. We propose model
sets as such a framework.

We consider quasicrystals defined by the geometric cut-and-projection method in its most
general form, called model sets [15] (sometimes called cut and projection set), as the underlying
mathematical structure under which emergence will be addressed. We agree with [16] on the priority
and greater generality of the term “model set” with regard to aperiodic structures and will use it
from now on. In quasicrystal mathematical literature, model sets are usually developed as models
for quasicrystals materials with good agreement with experiment [15,17–19]. Here we consider the
same mathematical structures on much smaller scales. Using the notion of geometric state sums,
[20] we define a scale invariant probabilistic measure, which allows us to compute the expected
values of observables. Then, the model sets background structure works as a fundamental clock
[21,22] for relational evolution of emergent quantum matter.

This paper is organized as follows: in Section 2 we introduce the concept and definitions of
model sets. In Section 3 we review and discuss elements of state sums from model sets and the
proposed expected values are discussed. We present discussions and implications for emergence of
matter and relational quantum evolution in Section 4.

2. Model Sets Definitions
We’ll start with some mathematical foundations for quasicrystals [15] relevant to our discussion.

A cut-and-project scheme (CPS) is a 3-tuplet G =
(
Rd, G,L

)
, where Rd is a real euclidean space, G

is some locally compact abelian group (in general it can be any topological group) and L is a lattice
in Rd ×G, with the two natural projections π:Rd ×G → Rd and π⊥:Rd ×G → G. With L = π(L),
π is a bijection between L and L, and π⊥(L) dense in G. E = Rd ×G is the embedding space, the
space Rd is called the parallel or physical space and G is the perpendicular or internal space. Due
the bijection between L and L, this scheme has a well-defined map, called star map, ? : L→ G :

x 7→ x? B π⊥(π
−1(x)). (1)

The ?-image of L is denoted L?. From now on we will restrict the internal space to be another real
euclidean space G = Rd.

For a given CPS G and a non-empty relatively compact subset K ⊂ G, the projected set

4(K) B
{
x ∈ L | x? ∈ K

}
=

{
π(y) | y ∈ L, π⊥(y) ∈ K

}
, (2)

or any translate t + 4(K) with t ∈ Rd, is called model set. K is called the window or the coding set.
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The window K need to be fixed, but it is, in general, arbitrary so that there are an infinity of
model sets for a given G. Some properties are representative of model sets 4, which we review
in Appendix A. Within a model set we can have different tiling configurations T4 as reviewed in
Appendix A.2. In this case, given a xi ∈ 4 and a tiling T4, it can be associated to xi different
configurations of prototiles around it, called vertex types VTi, with its associated cluster window
KVTi . A space-filling tiling will be give by a finite set of VT s.

For completeness and to set the notation for the following presentation, we give a general
outline in Appendix A for model sets and their associated patterns, tilings and symmetry. Within
a model set the cluster VTi at some positions xi can be used as a fixed point, the homothetic (or
similarity) center (κ), for a local inflation-deflation symmetry (LIDS) transformation Eq. (A10). The
general linear transformation preserving distance and solid shapes are the well known orthogonal
transformations of O(n), restricted to S O(n) if they preserve orientation. Mixing them with re-
scaling, or zoom-in zoom-out, diagonal transformations, namely homotheties, we get the similarities.
And if we let the scale factor be different in each perpendicular direction, we get the whole GL(n)
group of transformation, extended to the affine transformation by mixing with translations. This
fixed point transformation that generates mutually locally derivable (MLD) invariant tilings or point
sets (see Appendix A.2 for details) can be implemented equivalently by centering the window in x?i
and contracting the window by a new appropriated inflation multiplier λκ, generating the inflation
window Kκ = λκK (deflation being implemented by a deflation window Kκd = λ−1

κ K). More
generally we can consider an inflation window on any n-inflation level Kn

κ = λn
κK. In this case we

call this subset of 4 the κ-inflation model set defined in any level n

4n
κ B 4(K

n
κ ) =

{
x ∈ 4 | x? ∈ Kn

κ

}
=

{
π(y) | y ∈ L, π⊥(y) ∈ Kn

κ

}
. (3)

Relative frequency of VTs at level n, given from Eq. (A1) in terms of ratios of window polytope
volumes, is

f r
4n
κ
(VT n) =

Vol(KVT n)

Vol(Kn
κ )

. (4)

This also applies to patterns and results in most cases non-space-filling κ-inflation tilings (see
Appendix A.2, Remark A2). To get the absolute frequency of the VT , we take dens(4n

κ) f r
4n
κ
(VT n).

Note that the absolute frequency depends on the scale (lg) of G, but is an MLD invariant, so that it is
invariant under LIDS − an invariant in the self-similar space of κ-inflations.

Given two clusters κi and κ j and its κi-inflation model sets, at levels n and m, 4n
κi

and 4m
κ j

, the
overlap of their inflation point sets are called hits 4Hi j . Their inflation windows overlap is given by
Kκi j = Kn

κi
∩ Km

κ j
. The hits is then given by

4Hi j B 4(Kκi j) =
{
x ∈ (4n

κi
∩ 4m

κ j
)
}
=

{
π(y) | y ∈ L, π⊥(y) ∈ Kκi j

}
, (5)

A measure of the global overlap at the inflation level n, m is given in terms of their relative frequency,
relative to some other level l in the stack

Hκ
i j = f a

4l
κ
(4Hi j) = dens(4l

κ)
Vol(Kκi j)

Vol(Kl
κ)

. (6)

3. Geometric State Sum Models from Model Sets and Expected Values
The object of interest here is analogous to the partition function in context of statistic mechanics

and thermodynamics, or the path integral in quantum mechanics. But in a discrete setting we move
from integration to sums and, without a prior notion of Hamiltonian or Lagrangian (and associated
Gibbs measures), we directly specify the weights or amplitudes, where here we focus on weights
and can define a measure. With a more general measure for the model set structures we will later
discuss limits where one recovers measures with an usual Hamiltonian. To specify the configuration
of states of model sets 4 for a given G and associated weights we use the constraints given by four
principles. We will leave the fourth for the section 3.1 and start with the three principles:
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1- Superposition: Given different tilings (space or non-space-filling) configurations T k
4, there

are weights W
T k
4

associated with them and we consider the dynamics states sum

WT4 =
∑
T k
4@T4

W
T k
4
. (7)

2- Locality: weight is mainly encoding local information. The model set background structure
allows global regularity to result from the structure of local configurations

W
T k
4
=

∏
VTi j@T

k
4

WVTi j , (8)

where the pair of vertex types (i j) consider the connectivity of space-filling tilings and in the case of
non-space-filling tilings we consider a ball of radius R (as in Appendix A, Remark A1) with respect
to the subset T k.

3- Geometric realism: the symmetry of the local weights should reflect the symmetry of the
underlying geometry [20,23]. Implementing the symmetry at the level of the weight itself has the
bonus that the superposition of local configurations is under the admissible geometric configurations
of the tiling configuration space. To use the information of the autocorrelation function γ4, Eq. (
A4), a signature of the local configuration is given by the relative frequency of the local VT and its
hits interactions with neighbors, Eq. (6), where here we restrict to inflation windows at the same
level n = m and one level step from the larger inflation window on the stack

WVTi j = F[ f r
4l
κ
(VT i) f r

4l
κ
(VT j)Hκ

i j] (9)

for fixed inflation windows and where the function F, that could give usual Boltzmann weights, here
will be taken as

F[ f ] =

1, f = 0,

f , otherwise,
(10)

Theorem 1 (Geometric State Sum LIDS Invariance). For fixed scale, which fixes the density, the
local contribution to the weights given by Wi =

∑
j WVTi j is invariant under LIDS transformations

that preserves VTi and its neighbor VT j.

PROOF. The frequencies Eq. (4) are ratios of volumes, which are scaled by the same inflation
λ, so that it is invariant under LIDS. The hits overlap with all neighbors and also define a locally
finite specific cluster Ci j with window KCi j such that hits reduce to the relative frequency of Ci j mul-

tiplied by the constant density, Hκ
i =

∑
j Hκ

i j = dens(4l
κ)

Vol(Kκi∩(∪Kκ j ))

Vol(Kl
κ)

= dens(4l
κ)

Vol(KCi j )

Vol(Kl
κ)

=

dens(4l
κ) f r
4l
κ
(Ci j), which is invariant.

Theorem 2 (Geometric State Sum Global Invariance under LIDS). For fixed scale, which fixes the
density, the product of local contribution to the weights given by WT κ

4n =
∏N

i Wi, with N , here,
being the number of tiles in T4, is invariant under LIDS transformations that preserves VTi with
N → ∞.

PROOF. Due the properties of locally finite and finite local complexity, Remark A1, WT κ
4n

can always be written as a product of finite number of the relative frequencies of clusters Ci with
windows KCi , where these clusters include the VTs and the ones generated by the hits (Ci j) as in
theorem 1. But in the larger N limit, the number of a specific cluster Ci in the general product over

a tiling, must approach its frequency so that we can write WT κ
4n =

∏n′
i

(
f r
4l
κ
(Ci)

) f r
4l
κ
(Ci)N

, with n′

the number of clusters Cis. As the frequencies are invariants, WT κ
4n is invariant.
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This means that W4 is an invariant on the space of (self-similar or self-replicating) tilings
recursively generated by inflations λn

κi
. Due the fact that local LIDS invariance is given from a center

κi, it is interesting to consider dynamics from a κi point of view. Given a specific κi it sets two scales,
one is the inflation/deflation scale where κi is located at some level, and another is the scale lg for
the CPS G. Including the scale lg maintains the invariance at each fixed lg. So we assume that in
WT4 , 4 encodes the scale lg.

A probability measure on the finite tiling space is given from

µ
T k
4
(T k
4) =

1
WT4

W
T k
4
, (11)

and the expected value of a measurable function f : T k → R by

E4[ f ] B µ
T k
4
( f ) =

∑
T k
4@T4

f (T k
4)

1
WT4

W
T k
4

(12)

Consider now a subset 4κi , of some model set 4, that contains tilings T κi
4 with a specific VT

homothetic center κi at the origin. We can do translations of κi with the boundary condition that
its inflation window Kκi ⊂ K4, with K4 at the fixed level. This generates the Z-module Zκi(T

κi
4 )

and its LTM Z(T κi
4 ). The geometric state sum construction applies to this subset generated by the

Z-module, WT4κi , and to simplify we can rewrite Eq. (6) to this special case

Hκi
i j = f a

4(4Hi j) = dens(4)
Vol(Kκi j)

Vol(K4)
. (13)

3.1. Dynamics

For general model sets and tilings, a concrete determination of points and tiles requires an
algorithm in the embedding space that searches forL points and then does the necessary tests. In this
sense we have a notion of points or tiles that are already projected and are part of the parallel space
(they are ON) and others that not. The probabilistic measure built above allow us to define random
walks on a given model set 4. Basically, we start at one tiling from the sum Eq. (7), with a specific
κi at the origin that is ON and we can move it around in the Z(T κi

4 ) according some random walk
setting. After some steps N we have a path in parallel space given by the set of N steps elements of
Z(T κi

4 ), tκi = {t
l
κi
}, l = 1, ..., N, which represents the κi VT at different translations tl. This ordered

path tκi defines an auxiliary space given by a set of subsets of 4 called here animation Atκi

Ap
tκi

=
{
4tlκi
| tlκi
∈ Zκi(T

κi
4 ), l = 1...N

}
. (14)

with cardinality N and each 4tlκi
with its associated tiling T4tlκi

. By repeating this procedure M times

we generate a set of animations Atκi =
{
Ap

tκi
| p = 1...M

}
where p is a path of the random walk

given a particular instance of tκi .

Now we are in position to state the fourth constraining principle for geometric state sums, as
discussed in the beginning of section 3:

4- Principle of efficient language (PEL) [24–26]: This aims to implement a notion of efficiency
in discrete systems, which are codes or languages. The random walks with its auxiliary animations
sets Atκi above can be interpreted as a form of a look-ahead algorithm (so-called look-savings-ahead
algorithm in [20]) that allows us to define two computational functions that can be coupled to the
geometric state sum model. First we consider the so-called hit potential, Y , which takes values on
the natural numbers including zero, Y : T k → N. At each tiling position κ j of T4, that has κi at
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origin, the hit potential Y j can be defined in two ways, first by the number of animations that uses
that position κ j as part of its path p = tκ j

Y j = card
({

tκi | κ j @ tκi

})
. (15)

and second, in each animation Ap
tκi

by the number of steps that have that position in its set

Ya
j = card

({
4tlκi
⊂ Ap

tκi
| κ j @ T4tlκi

})
. (16)

We note that a random walk distribution with values on R could be used.
The second function considered is called savings potential, S : T k → N. In each animation

Ap
tκi

we count the number of overlaps between the path positions tκi and the union of their associated
tiling inflation sets T4tlκi

S (Ap
tκi
) = card

({
tκi u (tT4tlκi

) | 4tlκi
⊂ Ap

tκi
, l = 1, ..., N

})
− N. (17)

In this way we can consider the state sums coupled with the subset of animations Aκi , WTAκi
,

WT4 =
∑
T k
4@T4

W
T k
4
W
T k

Aκi
, (18)

with
W
T k

Aκi
=

∑
Aκi@T

k
Aκi

∏
VT j@Aκi

F[S (Aκi) f r
4l
κ
(VT j)Y j], (19)

with the hit potential from Eq. (15) and WVTi j = F[ f r
4l
κ
(VTi) f r

4l
κ
(VT j)H

κi
i jYiY j] in W

T k
4
.

3.2. Expected Values

The immediate expected value of interest is the one for the tiling state itself, W
T k
4

E4[WT k
4
] =

1
WT4

∑
W
T k
4
@WT4

W2
T k
4

W
T k

Aκi
(20)

Note that if we use Eq. (15) in Eq. (18) without the savings potential contribution, the main
contribution to the weights will come from tiles, which are translations of κi. We can get a simpler
expression for this expected value on the extreme situation where all the random walks steps are
constrained to oscillating around the neighbors of the κi at the origin so that the tiling contributions
(on a reduced model set 4o) reduces to the VTκi itself and its immediate neighbors, VTκl . In this
situation we can consider only the expected value of Hκi

i j , which, to simplify the notation, we include
the frequencies Hκi

i j → f r
4l
κ
(VTi) f r

4l
κ
(VT j)H

κi
i j

E4o [Hκi
i j ] =

∑
W
T

j
4

@WT4

(∏
l(H

κi
il )

2YiYl
)

j∑
W
T

j
4

@WT4

(∏
l Hκi

il YiYl
)

j

. (21)

which has well defined k-momentum

E4o [
(
Hκi

i j

)k
] =

∑
W
T

j
4

@WT4

(∏
l(H

κi
il )

k+1YiYl
)

j∑
W
T

j
4

@WT4

(∏
l Hκi

il YiYl
)

j

. (22)
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As the dependence of the hit potential on the random walk probability distribution can be made the
same for any type of κi, the expected value invariant distinction between different VTs κi is given
by the absolute frequency Eq. (13), which is a LIDS invariant but contains a part lg-invariant, the
relative frequency, and a part dependent on this scale given by its density. This can be computed
numerically and ratios can be established between different VT s. Later we will discuss some specific
examples and implications this has for physics.

Relaxing the condition on the random walks, letting them spread over larger number of
tiles and noting that the weights contributions are from the tiles, which are translations of κi, the
expected value Eq. (20) gives the expected value of a pattern in the animations Ap

tκi
generated by the

translations of κi, which depends mainly on the savings and hit potentials. If we restrict the expected
values of the hit potential, disconsidering savings contributions

E4[YiY j] =

∑
W
T

j
4

@WT4

(∏
l Hκi

il (YiYl)
2
)

j

WT4
. (23)

which can be used to probe the possible kind of path pattern generated by the random walks by
considering a improved computational accumulative hit potential function where in Eq. (15) we
consider a set of tκi starting at different positions of the same κi in Z(T κi

4 ).
As the geometric state sum is built from the geometry of the windows polytopes it is possible

to compute expected values of geometrical quantities such as length, area and volume, V : T k → R.
For example, for the volume E4[V(WTAκi

)], in the case analogous of Eq. (21)

E4o [Vκi ] =

∑
W
T

j
4

@WT4

(∏
l(Vol(Kκil))

2YiYl
)

j∑
W
T

j
4

@WT4
(
∏

l Vol(Kκil)YiYl) j
. (24)

The last expected value we will consider is for the autocorrelation function Eq. (A4)

E4[γκi ] =
1

WT4

∑
W
T

j
4

@WT4

γ
j
κiWT j

4

W
T

j
Aκi

(25)

where γ j
κi is the autocorrelation on the tiling j with regard the translations of κi. This expected value

allows to define an order parameter, hit averaging H,

H4 =
E4[γκi ]

N
, (26)

where the meaning of the order parameter can be seen by looking in 4o over the scale log. Under a
coarse-grained process in parallel space, there is an inverse process in perpendicular space, where
the higher density limit dens(4κi) → 1 sets a fixed point where the state sum is also scale invariant
and uniform distribution is enforced.

3.3. Model Sets Examples

The model sets of interest here are the ones for d = 3. The most studied family of model sets
are the ones for which the relative frequency Eq. (A1), for their VTs, are elements of the ring of
integers [15], here called Dirichlet integers,

Z[φ] = {m + nφ|m, n ∈ Z}, (27)

where φ =
√

5+1
2 is the golden ratio. This family includes the 3-dimensional icosahedral model sets

[15]. The two main examples are projected from the Z6 lattice, GZ6 = (R3,R3, Z6), and from the
D6 lattice, GD6 = (R3,R3, D6). The GZ6 model set has 24 VTs and GD6 has 36 VTs and tables
with explicitly values for the relative frequencies can be found for example in [27].
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For these two model sets the scale invariant part of E4o [Hκi
i j ] is an element of Z[φ] as its powers

are again in Z[φ] due to φ2 = φ+ 1. Ratios between E4o [Hκi
i j ] for different κi-VTs have invariant

part, which are ratios between Dirichlet integers.
The GZ6 and GD6 model sets are space-filling. Possible κ-inflation non-space-filling tilings

in these cases can be re-scaled to space-filling ones. Their VTs are not regular polytopes, but are
deformed projections from hyper dimensional regular polytopes in the embedding lattice. Another
example is derived from the E8 lattice [28], which are non-space-filling tilings, so-called compound
quasicrystals (CQC) or n-component model sets (see [15] for an example of a 3-component model set
describing the Danzer’s ABCK tiling). E8 has a well known 4-dimensional model set implementation,
the so-called Elser-Sloane model set [29], which can be naturally extended to 3-dimensional model
sets [30]. The 3-dimensional E8-CQC uses a different approach by considering 6-dimensional
sub-spaces of E8. Gn

E8
= (R3,R3, L6

n ⊂ E8). One can employ the usual CPS on the 6-dimensional
sub-spaces by considering the canonical window from the Voronoi polytope there, but as we don’t
need space-filings tilings, the spherical approximation here can be taken as the window defining
the CPS. The construction relies only on one window K and κ-inflations given by powers of φ. We
specifically consider the cut-window to be scaled by φ1, φK, and one inflation window by φ0, K.
This construction makes it possible to combine periodic and aperiodic order by having model sets
with tilings with regular VTs, which are tetrahedrons or groups of tetrahedrons, where the groups
considered are multiples of groups of four tetrahedra, up to 20 (n4G, n = 1, 2, 3, 4, 5), that can
occupy the same center position κi and generate convex hulls of crystallographic objects such as the
cuboctahedron.

This procedure gives the relative frequencies for κ-inflation tilings to be elements of Z[φ−1], and
to be the same for all n4Gs. So the scale invariant part of E4o [Hκi

i j ] is the same for the different n4Gs
and the scale dependent density, dens(4n4G), being the important part. Scale invariant information
for the expected values for different n4G are given by ratios between the different densities.

In the next section we provide a novel method, so-called texture scheme (TMS), to do the
explicit computations by embedding in a lattice, a set, which is isomorphic and very close to the
original model set.

3.3.1. Explicit construction of the E8-CQC

An analytical method to build the Z[φ]-related model sets and the CQC, which gives analytical
foundations for the densities, has been recently developed. We’ll describe the analytic construction
of the model set, in lattice coordinates, with a lattice of the target space, not of the embedding
space. That makes a huge dimension reduction and accelerates the computation, without any loss on
information of the model set.

The union of five model sets of Gn
E8 , compounded together in a unique 3-dimensional space

embedded in R3, are discrete sets in D3, the cartesian product of 3 instances of the Dirichlet ring, see
equation (27). Our new description of this model set considers a discrete texture of the target space
embedded in a lattice (Z3 in 3-dimensions), and a family of coordinate transformations between the
most compact set and the exact model set in D coordinates.

Using the same notation of section 2 we define a TMS as a 3-tuplet G′ =
(
Zd, G′,L

)
, where

Zd is a euclidean cubic lattice, G′ is a bounded region of a nonlinear transformation of Zd into
a unit cube and L is a lattice in Zd ×G′, with the two natural projections π:Zd ×G′ → Zd and
π⊥:Zd ×G′ → G′. With L = π(L), π is a bijection between L and L, and π⊥(L) dense in G′.
E = Zd ×G′ is again the embedding space, the space Zd is the parallel space and G′ is the virtual
perpendicular or virtual internal space.

This scheme has also the well-defined star map applied to G′, ? : L→ G′:

? (x) = x/φ −
⌊
x/φ

⌉
. (28)

The star cube, ?(Z3), a cube of unit edge length, centered at point O = {0, 0, 0}. The virtual
spherical cut window is inside of this cube but has a smaller diameter φ−1 and is centered on κi.
Restricting to points, which are centroids of a specific VT , corresponds to operating on a subset of
the star cube. For the VT of a group of 4 tetrahedrons, whose convex hull is a cuboctahedron, the
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restriction in the star cube is simply a smaller O-centred star cube of diameter 3φ−7. We’ll define in
equation (A20) a function fV(k) so that all model set vertices are in fV(Z)3 and 2| f (Z)| < φ−1, and
a function f4G(k) so that all 4G-centroids are in f4G(Z)3 and 2| f4G(Z)| < 3φ−7.

We can recover the group manifold of G′ as a real S U(2) manifold isomorphic to the sphere
S 3. Parametrizing S 3 by the three pure imaginary quaternions i, j, k, q = e2π(ai+b j+ck) spans S 3

when a, b, c spans (− 1
2 ,+ 1

2 ] and qq̄ = 1 so with a = ?(x), b = ?(y), c = ?(z) we use the star
map to get coordinates in the Lie algebra su(2), and the exponential map toward the Lie group
manifold S 3.

More details on the CQC implementation, such as how to get the precise coordinates, are
shown in Appendix B.

The relative frequencies for κ-inflation tilings are computed from the distance in the perpendic-
ular space between the star maps of two homothetic centers, κi and κ j, whose square is a Dirichlet
integer.

d2(?(κi),?(κ j)) = (
−−−−→
?(κi) −

−−−−→
?(κ j))

2 (29)

The relative volume of the intersection of two balls of radius 1, whose centers are distant by d, with
respect to the enclosing ball of radius φ is (see Eq. (6)

Vol(Kκi j)

Vol(K)
=

1
16φ3 (2 − d)2(4 + d). (30)

If d = m + nφ the equation (30) reduces to

Vol(Kκi j)

Vol(K)
= (2φ − 3) +

3
4
((3m − 2n) + φ(−2m + n))

+
1

16
((−3m3 + 6m2n − 3mn2 + n3) + φm(2m2 − 3mn + 3n2)).

(31)

When i = j we have the relative frequency of the inflation window given by (2φ − 3) = φ−3,

which is the volume of a ball of radius one relative to a ball of radius φ. For |d| < 2/φ,
Vol(Kκi j )

Vol(K)
<

φ−3(1 − 2φd/5) which is a good linear approximation.

4. Implications
In physical terms, the quasicrystal structures described by the higher dimensional model sets

mathematics discussed here are positioned at large scales or low energy, such as the quasicrystal
materials built upon fundamental particles over the geometry of spacetime. The agreement of the
model set theory with experiments involving quasicrystals materials is remarkable. For example,
the free energy among other observables are shown to be invariant under translation of the window
in perpendicular space, which gives a geometric understanding of the so-called phasons modes
[19]. Here we’ll discuss implications to push the model sets structures to short distances, such
as the Planck scale, as a candidate for the unification structure for quantum gravity and particle
physics. The motivation for this proposal comes from different fronts, such as a renewed interest in
discrete mathematics with regards to the quantum gravity regime as discussed in the introduction,
the problem of time, and the fact that aperiodic structures appear in solutions of quantum cosmology
both with general relativity and modified gravity theories [31] (and references therein). In this
inverted case we need to consider the emergence of “fundamental” particles, spacetime and their
governing physical laws.

The approach of entropic or emergent gravity [1,2] considers a particle of mass m approaching
an holographic screen from the side where spacetime has already emerged. The holographic
principle is applied to assume the encoding of the microscopic configurations, Nc, behind the screen,
in the area, As, of the screen, Nc ∝ As, and the law of inertia, the equivalence principle, Newton’s
gravitational law, or Einstein equations can be derived. In this paradigm, gravity is an emergent
entropic force from the underlying configuration of quantum matter. In this case, one transfers the
problem of emergence of spacetime to the problem of emergence of quantum matter. Once one has
mass and energy distributions and its dynamics, gravity will emerge. But, in a circular way, the
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configuration of matter should be affected by gravity itself. Essentially, the holographic principle
and the associated covariant entropy bound are linked to regimes where spacetime can be classically
well approximated with sufficient matter content. Nevertheless the bound linked to the area and not
to the volume of the region, gives a strong evidence in favors of unitarity of the underlying quantum
field theory rather than locality of quantum fields as quantum evolution preserve information. It is
noteworthy that the locality principle in section 3 refers to the state sum weights of the underlying
model sets structures, which is about the local topology given from those structures. We will require
in the construction below emergent quantum evolution unitarity without need to refer to emergent
locality in a relational description.

So, how does one define evolution without a prior notion of spacetime, regarding gravity as the
geometry of spacetime? The problem is having an unification of general relativity with quantum
mechanics in a theory of quantum gravity, usually referred to as the problem of time in quantum
gravity [32–35]. One approach, called internal time, is to consider relational evolution where some
physical degree of freedom evolves relative to others, with the dynamics governed by more general
Hamiltonian constraints [36]. This works well if the degree of freedom playing the role of internal
time behaves monotonically, which is generally not the case. The physical system internal time can
be a quantum field or some underlying structure, such as the model set discussed here. In this case it
is possible to have the internal time given from a physical (a)periodic clock with turning points and
with possible self-interactions. In general the choice of internal time or clocks is local and dynamic,
which is the same problem of gauge fixing in quantization of gauge theories [21,37,38], which leads
to the conclusion that the problem of time is a special case of the so-called Gribov problem in
general gauge theories. In other terms, how does one define global evolution with respect to some
underlying oscillating clock system with turning points? One simple model system solution was
given recently [21], where one distinguishes three necessary notions of time, the usual background
time parameter, the global monotonic relativistic one and a new notion of a clock variable (more
details on physical implementations recently developed on this in [22,39].) One of the implications
of having the model set as the underlying structure is that it can play the role of the underlying clock,
providing the global monotonic time and the clock variable, which is understood as internal time.

4.1. Fundamental Clocks and an Emergent Observational Screen

If there is an underlying discrete structure as the proposed model sets, one question is how
matter and time emerge from those structures. To propose one possibility on the emergence of
matter, let’s consider that there is a fundamental limit on observation on small scales, which here
translate to the coarse-grained model set scaling. Depending on each system this limit define the
fundamental properties that can be observed, an emergent observational screen, which encodes
all information behind it, in lower scales, so that we have access only to expected values with
respect to the underlying model sets structures. From the point of view of the state sum probabilistic
measure over re-scaling that limit is the higher density scale invariant limit, H4o → 1 where the
measure is locally invariant under LIDS and under the model set lg re-scaling; and information of
expected values are available. This limit can be achieved by considering, Kl

κ � Kn
κi
∩ Km

κ j
, in Eq. (6).

Interestingly, in this limit, coarse-grained can be followed by re-scaling of VTs, given a notion of
2-dimensional layers spread in 3-dimensions so that the emergent observational screen has a local
3-dimensional aspect where information of both emerged and non-emerged sides can coexist.

In usual model sets relative frequencies are uniformly distributed, so one expects to have ergod-
icity [15,40], but here the savings and the hit potentials allow for dynamics that steer probabilities
away from uniform distributions, which can be interpreted as the PEL. Another aspect that can leads
away from ergodicity is the more general possibility of less homogeneous non-space-filling tilings.
In the regime of higher density in perpendicular space according the order parameter Eq. (26), one
can expect to recover the usual equilibrium situation with a valid measure given by an usual path
integral measure, µPI . Similar behavior occurs with polymer physics, which can be modeled by
random chains that converge to the path integral of a free particle or with ensembles of polymers
described by fluctuating quantum fields [41] in the limit of large number of nodes in the chain.
Therefore we can assume that expected value of functions behave on the emergent observational
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screen similarly as measured by the two different measures, µ
T k
4
( f ) and µPI( f ). The following

function captures the emergent observational screen information

f h
4 [ f ] = δ(µ

T k
4
( f ) − µPI( f )), (32)

where µPI is given for the measure for usual path integral, implementing physics laws such as
momentum and energy conservation, and δ, the delta function. The function Eq. (32) allows us to
establish a correspondence between quantities in both sides of the screen. Due theorems 1 and
2, frequencies of clusters in the model set, are natural conserved quantities under re-scaling to
be mapped to physical quantities such as mass and energy. In polymer physics it is possible to
establish the correspondence of the underlying parameters of the random chains with the path
integral properties, such as the link’s length of the chain corresponding to the particle mass. We
expect the same here, with the expected values of properties of κi given the necessary quantum
numbers of fields excitation on the emergent path integral, especially Hκi

i j playing the role of energy
in correlation function of fields. Another opportunity is to have the screen working as a background
for relational evolution of the emergent degrees of freedom. Let us see how this can work.

In the limit of higher density — uniform distribution, the state sum works as a partition function,
which, from the proof of theorem 2, reduces to a product of cluster frequencies

∏n′
i f fiN

i , which has
the exponential asymptotic eN(λn)(

∑
i filn( fi)), where the number of tiles grows with the difference of

levels between inflations of the large window compared to the small ones and the new quantity that
appears in the exponential we identify with the information entropy of the tiling state

ITk = −
∑

i

filn( fi) (33)

Then thermodynamic densities can be well defined such as the free energy FE = lim
N→∞

1
λnN lnW4(λn),

which is also function of clusters frequencies or hits. In terms of the partition functions from Eq. (
32) ∑

T k

e−N(λn)I
T k −

∑
i

e−βEi = 0 (34)

which allows us to establish a correspondence between tiling states probabilities and emergent
energy states probabilities with N(λn) corresponding to inverse temperature and cluster frequencies
(or their information entropy) with energy.

Now that we have a notion of energy in the emergent observational screen (this is similar to
the notion of a holographic screen, but without spacetime metrics, as there is an averaging over
underlying degree of freedom), we can consider relational evolution by coupling in the emergent
side an emergent Hamiltonian to describe additional degrees of freedom such as momentum and
position of modes of some emerged quantum field, with the screen providing an effective potential
for them. But the clusters frequencies or hits are in general aperiodic oscillating functions of
position on parallel space ( fi(x) with x as in Eq. (2)) as seen on the diffraction spectrum of the
autocorrelation function Eq. (A5). Quantum relational evolution with respect this kind of background
can be problematic even with certain simple relativistic Hamiltonians. Nevertheless an example of
Hamiltonian constraint for relativistic systems working with periodic clock is given in [22] and in
our notation given by

C = −p2
fi − (λ

n)2 f 2
i + H(x, p)2 = 0 (35)

for general Hamiltonian H(x, p), with p fi being the momentum conjugated of our hits fi and the
scaling factor given by the inflation parameter here (λn). The simpler form for fi is given by the
star map fi(x) = |x?| as hits depend on distances. Using the texture scheme periodic star map Eq.
(28) we have the same fundamental clock studied in [22], which provides well defined quantum
evolution for very small or very large inflations λn compared to the energy scale.

4.1.1. Relational Evolution and Model Sets

As discussed in section 3.3.1, with the proposed texture scheme we can encode aperiodic
information, such as the example of Appendix C, in a periodic structure (see also [42]) such as
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the perpendicular space information of the star map Eq. (28), which for working with distances in
parallel space and with some normalization we rewrite as

? (x) = (|(4x − T )/T − 4
⌊
(x + T /4)/T

⌉
| − 1) f t, (36)

where f t will give the turning points of the clock, and the form of this star map is shown in Figure
1. If we define relational evolution, Eq. (35), for a clock, fi, given by Eq. (36), fi(x) = ?(x)

Figure 1. Periodic star map for T = φ and f t = 1.

the solution is given in [22], noting that this fi can be decomposed in a continuous and piecewise
linear fashion so that to have d fi/dx = ±1, the only difference being the irrational period, which
we keep as an additional parameter T . For relational evolution with regard the degree of freedom
fi, the Hamiltonian constraint problem reduces to compute evolving wave functions or transition
amplitudes by solving ordinary differential equations in the energy representation, where Ek is one
of the energy eigenvalues of Ĥ and ψk the corresponding eigenfunction (omitting the level n of λ
inflation)

ih̄
dψk( fi)

d fi
= ±

√
E2

k − λ
2 f 2

i ψk( fi) , (37)

which has turning points on f t
i = Ek/λ. The solution is given, unwinding the time clock by

replacing fi(x) = ?(x) explicitly, in terms of x by

ψk(x) = ψk(x0)e(isgn(d fi/dx)(Θk( fi(x))−Θk( fi(x0)))) (38)

with some initial f 0
i (xo) in a given half-cycle of the clock, and with the phase

Θk( fi) = −
1
2h̄

 fi
√

E2
k − λ

2 f 2
i +

E2
k

λ
arcsin

(
λ fi
Ek

). (39)

Following [22] evolution for the ground state of a harmonic system Hamiltonian can be then
evaluated for different regimes of λ with a lack of smoothness but preserving unitarity and continuity.
With very small λ, the usual quantum mechanics evolution with a monotonic time parameter is
trivially recovered. For intermediary values a finite decoherence time appears, but for large λ
(λn → ∞, f t → 0) where the period of the clock, TC = T f t = T Ek/λ is much smaller than the
emerged quantum system period, TS = 2πh̄/Ek, usual evolution is again recovered

ψk(τ) ≈ ψk(0) exp
(
−

iπEk

Th̄
τ
)

. (40)

where we wrote the parallel space distance x = τ to emphasise its role as the relativistic time. One
difference from usual quantum evolution is a re-scaling of the system period by a factor of T /π,
which for periodic clock would make sense to have only one clock period T , which then can be
absorbed in a bare frequency ω′ = Tω/π that appears in the expression of the emergent system
Hamiltonian. But in the case of model sets, even if we focus only in one specific CPS, there is the
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natural possibility to have two or more fundamental periods by splitting the CPS for different VT s
and its Z-module. This is easily seen for Eq. (33), where ignoring hits reduces the VT frequencies,
which we compute for GZ6 and is shown in Figure 2. Including hits, they are ratios of volumes of

Figure 2. Ik for each of the 24 VT s of GZ6 .

associated cluster’s windows over a fixed larger window. Using the spherical approximation for
the windows and considering that for the model sets of interest the radius is a number in Z[φ−1]
or Z[φ], which can be written as (m + nφp) where m, n ∈ N and p ∈ Z. The general form of Eq.
(33) is invariant over the variations of the parameters and is shown in Figure 3 where, without
normalization, it has a maximum in e−1 but with most states in lower scale away from this maximum
and with visible gaps, resembling the rest mass spectrum of known particles including the composite
hadrons. A zoom in a small scale is shown in Figure 4. The requirement of the multiple periods T

Figure 3. Sorted Ik for different windows with radius (m + nφp) in a large window (mmax + nmaxφ
pmax ).

Figure 4. Zoom in a intermediary scale of sorted Ik for different windows with radius (m + nφp) in a large
window (mmax + nmaxφ

pmax ).

is clear in the examples of Appendix C, and also can be seen with our periodic star map where each
n4G kind of VT of the E8-CQC non-space-filling model sets defines specific tilings with specific
inner distances, which we can re-scale to have all n4G tilings with the same distances, but them
including the scale factor, in each case, to affect the period of the star map. In the large density
limit this doesn’t matter but as we are seeing, to recover quantum evolution the clock needs to be
many orders of magnitude below the quantum system oscillations, justifying the role of different
small T . This emphasises the reflexively self-generating, self-modeling, self-contained nature of
a emergent observational screen where the underlying structure must provide properties such as
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mass for the emergent quantum system while at the same time playing the role of the clock for
relational evolution. This means that each fundamental bound-state system, such as the hadrons,
has its own associated clock, which provides its mass and relational evolution. In this case, given
a CPS, with its set of disjoint tilings Tk given frequencies and associated different Ik and Tk, the
hadronic spectrum, ωh, could be derived by fixing one reference frequency ω, ωh = π

Tk
ω, consistent

with the thermodynamic correspondence Eq. (34), ωh ∼ Ik. Considering explicit hadronic states

[43] with Enl ∼ M
3
2
h (2n + l − 1

2 )
2
3 gives a direct map with hadronic masses Mh. This allows to have

a slight different prediction, from [22,39], of the upper bound on the fundamental clock frequency
as it depends on the quantum system of consideration predicting different bounds for different
fundamental systems.

In summary, the measure µ
T k
4

plays the role of a generator of mass and a clock for relational
evolution (note that it is similar to the role of fast variables in [14] or the neural network variables
in [44,45]). Model sets provide one way to reconcile discrete, finite systems with invariance under
continuous symmetry groups, addressing the problem "How can discrete, finite systems such as fields
on a lattice, display invariance under continuous symmetry groups?" [46]. The novel possibility
arises in terms of spacetime symmetry by realizing that the discrete and continuous can coexist
over LIDS transformation leading to the notion of a emergent observational screen discussed above
and in terms of charge gauge symmetry by generalizing the group G in the CPS G to more general
groups such as the Lie groups necessary for the standard model of particle physics, S U(3), S U(2)
and U(1), and interpreting the perpendicular space, as also generating charge in addition of mass
and time.

Acknowledgments: We thank and acknowledge Dugan Hammock for providing the base code used to test
some of the concepts discussed in this paper, such as the CQC model set derived from E8.

Appendix A. Review of Model Sets
Some properties are representative of model sets 4 and for completeness we review them,

following mainly [15]. This is based on measure theory background [47], which means that we have
a probabilistic space as the underlying structure.

Appendix A.1. Model Sets Properties

Remark A1 (Model sets properties). 1. Uniformly discrete: There is radii r > 0 so that each
ball of radius r contains at most one point of 4;

2. Relatively dense: There is radii R > 0 so that each ball of radius R contains at lest one point
of 4;

3. Locally finite: For all compact Λ ⊂ Rd, the intersection C = Λ∩ 4 (called cluster) is a finite
or empty set;

4. Finite local complexity (FLC): The collection
{
(t + Λ) ∩ 4 | t ∈ Rd

}
, usually represented by

translations 4 − 4, contains only finitely clusters up to translations.
5. Uniform distribution: A theorem proved in [15], which says that given some ordering sequence

(xi)i∈N of the points on 4, the sequence (x?i )i∈N is uniformly distributed in K.

Point sets with properties 1 and 2 above are called Delone Sets. A characteristic property of a
point set in Rd is the average number of points per unit volume. We are interested in the relative
frequency f r and absolute frequency f a of sub-sets or clusters of a model set. Due to uniform
distribution property the relative frequency of a cluster can be computed as ratios of windows
volumes

f r
4(C) =

Vol(KC)

Vol(K)
, (A1)
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where KC is the compact window or coding region of the C ⊂ 4, given by KC B ∩x∈C(K − x?), and
Vol gives the volume of the windows. The absolute frequency is given by

f a
4(C) = dens(4) f r

4(C), (A2)

where dens(4) is the density of the model set

dens(4) = limr→∞
card(4r)

Vol(Br(0))
, (A3)

where for model sets the limit inferior and superior coincide. The open ball of radius r around x is
given by Br(x), and card is the set cardinality.

A hallmark function widely used to characterize a model set is the autocorrelation function

γ4 =
∑

t∈4−4
dens(4)

Vol(K ∩ (K − t?))
Vol(K)

δt, (A4)

from where the diffraction spectrum can be computed from the Fourier transform

γ̂4 =
∑
k∈L

I(k)δk, (A5)

with L = π(L), L the dual lattice of L, and the coefficients I(k) = |A(k)|2, which in the case of
internal space Rd is given by

A(k) =
dens(4)
Vol(K)

∫
K

e2πi(yk?)dy. (A6)

In practical application it is useful to use the spherical approximation of the window considering a
ball BRw = BRw(0) of radius Rw, in spherical coordinates

A(k) =
dens(4)

Vol(BRw)

∫
BRw

e2πi(yk?)dy = dens(4)
Γ( d

2 + 1)

(|k?|πRw)
d
2

J d
2
(2π|k?|Rw), (A7)

where Γ is the gamma function, J the Bessel functions of the first kind and the radius for an
approximating spherical window given by

Rw =

(
vol(K)

π
d
2

Γ(
d
2
+ 1)

) 1
d

. (A8)

Appendix A.2. Model Sets Patterns and Tilings

A pattern T in Rd (T @ Rd) is a non-empty set of non-empty subsets of Rd. The elements of
T are the fragments of the pattern T . A locally finite point set such as 4 is naturally turned into a
pattern as

T = T4 = {{x} | x ∈ 4}, (A9)

A tiling in Rd is a pattern T = {Ti | i ∈ I} @ Rd, where I is a countable index set, the fragments
Ti of T are non-empty closed sets in Rd subject to the conditions

Remark A2 (Tiling conditions). 1. ∪i∈ITi = Rd,
2. int(Ti) ∩ int(T j) = Ø for all i , j and

3. Ti being compact and equal to the closure of its interior Ti = int(Ti).

If we release condition 1 above we have a non-space filing tiling or pattern. The Ti are called
regular tiles of the tiling and their equivalence class up to congruence are called prototiles. The
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locally finite property of the point set extends naturally to the pattern T and also the definition of a
cluster C = ΛuT of T .

Two locally finite patterns T and T ′ are locally indistinguishable (LI), T li
∼ T ′, when any

cluster of T occurs also in T ′ and vice versa. This means that there are translations t, t′ ∈ Rd such
that T uΛ = (−t′ +T ′) uΛ and T ′ uΛ = (−t +T ) uΛ. The translation of a tiling is understood
as t + T = {t + Ti | i ∈ I}. Locally indistinguishability is an equivalence on the class of patterns,
written as LI(T ) .

A Z-module for a given Λ and T , ZΛ(T ), for some x ∈ Rd, is defined as

ZΛ(T ) =< t | T u (x + Λ) = (−t + T ) u (x + Λ) >Z,

which is the Z-module generated by all translations between occurrences of some Λ-cluster in T .
When Λ ⊂ Λ′, one has ZΛ′(T ) ⊂ ZΛ(T ) and ZΛ∪Λ′(T ) = ZΛ(T )∩ZΛ′(T ). The limit translation
module (LTM) Z(T ) is then defined as the inductive limit of the ZΛ(T ) over all Λ ⊂ Rd, ordered
according to inclusion. The Z(T ) is an invariant of LI(T ).

A pattern T ′ @ Rd is locally derivable (LD) from a pattern T , T ld
∼ T ′, when a compact

neighborhood Λ ⊂ Rd of 0 exists such that whenever (−x + T ) u Λ = (−y + T ) u Λ holds
for x, y ∈ Rd, one also has (−x + T ′) u {0} = (−y + T ′) u {0}. This extends to LI classes of

patterns. A class LI(T ′)is called LD from LI(T ), LI(T ) ld
∼ LI(T ′), when patterns T1 ∈ LI(T )

and T ′1 ∈ LI(T ′) exists such that T1
ld
∼ T ′1 . And also apply to the point set itself: two model sets

obtained from the same CPS, but with different windows K1 and K2, satisfy 4(K1)
ld
∼ 4(K2) if and

only if K2 can be expressed as a finite union of sets each of which is a finite intersection of translates
of K1, with translations from L?.

Two patterns T1 and T2 (similarly for two LI classes) are called mutually locally derivable
(MLD) from each other when T1

ld
∼ T 2 and T2

ld
∼ T 1. MLD is an equivalence relation on patterns

(or LI classes), T1
mld
∼ T2. It is straightforward to show that with T ld

∼ T ′ one has Z(T ) ⊂ Z(T ′)

and with T mld
∼ T ′ one has Z(T ) = Z(T ′). Then the LTM Z(T ) of T is an invariant of the entire

MLD class of LI(T ).
A pattern T is translationally repetitive when, for every compact Λ there is a compact Λ′ ⊂ Rd

such that for every x, y ∈ Rd, the relation T u (x + Λ) = (−t +T )u (y + Λ) holds for some t ∈ Λ′.

The set Λ′ quantifies the local search space to locate arbitrary Λ-clusters of T . For T ld
∼ T ′, of T is

repetitive, then so is T ′.
The local topology is defined for two FLC sets 4, 4′ so that they are ε-close when one

has 4 ∩ B1/ε(0) = (−t + 4′) ∩ B1/ε(0) for some t ∈ Bε(0). The topology is generated by the
possible neighborhoods with all ε > 0 sufficiently small and a metric topology. This topology

permits the concept of a continuous geometric hull X(4) given by X(4) =
{
t + 4 | t ∈ Rd

}
, and

we have that X(4) = LI(4) and 4 is repetitive. The discrete hull, X0(4), is given by X0(4) ={
4′ ∈ X(4) | 0 ∈ 4′

}
.

Appendix A.3. Model Sets Inflation-Deflation Symmetry

To go beyond the "classic" symmetries, one needs an extension of other invariance properties to
discrete structures. A discrete structure 4 is said to have a local inflation-deflation symmetry (LIDS)
relative to a linear map L if 4 and L(4) are MLD, 4 mld

∼ L(4). When L(x) = λx (or L(x) = λRx in
general, with R ∈ O(d,R)), the number λ is called the inflation multiplier of the LIDS. A necessary
condition for L to define an LIDS is Z(L(4)) = Z(4). For tilings an inflation rule consists of the
mappings

λTi 7→ ∪
n
j=1T j + Ai j (A10)

with finite sets Ai j ⊂ Rd, subject to the mutual disjointness of the interiors of the sets on the right
hand side and to the (individual) volume consistence condition vol(Ti) =

∑n
j=1 vol(T j)card(Ai j),

both for each 1 ≤ i ≤ n.
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Appendix B. 3-Dimensional Compound Quasicrystal from the E8 Lattice
The canonical coordinate system of the E8-CQC can be give using an enumeration function.

An enumeration function is an odd and growing function in and on Z

fV : Z→ Z|(∀x ∈ Z, fV(x) = − fV(−x)) and (∀x, y ∈ N2, fV(x + y) ≥ fV(x)), (A11)

and the canonical enumeration function is

fV(x) = bxφe. (A12)

The function fV(Z) is known as the OEIS sequence [48] and take the first 20 values: {0, 2, 3, 5, 6, 8,
10, 11, 13, 15, 16, 18, 19, 21, 23, 24, 26, 28, 29, 31}. The density of fV(Z) in Z, or the probability
of an integer to be in the image of f is δ( f ) = φ−1. Values for the function fV are given in Table (2).
The interval function, or discrete derivative d fV(x) is the palindrome Fibonacci word encoded with
Long=2 and Short=1, the sequence [49]

d fV(x) = fV(x + 1) − fV(x) =
⌊
(x + 1)φ

⌉
− bxφe. (A13)

The canonical coordinate system of the E8-CQC is the image of Z3 by the canonical enumeration
function: fV(Z3).

From the vertices found in the canonical coordinates, satisfying the Elser-Sloane conditions (
A20,A21,A22), the E8-CQC selects only those forming regular tetrahedrons in the slice (correspond-
ing to regular tetrahedrons in E8.) One way to implement this is an elimination function, applied on
fV(Z3), but it is proved that they don’t use the full set fV(Z), so it is more efficient to compose the
enumeration function fV with a second enumeration function gT , where the composition gives fT
At the next step we only keep in the E8-CQC the "4-group", the tetrahedrons which meet as group
of four at one common vertex such that their convex hull is a cuboctahedron. We know that they
will correspond to the equator of a 24-cell in the E8 Lattice. Again, one way to implement this is an
elimination function, applied now on fT (Z3), but it is more efficient to compose the enumeration
function with a new enumeration function g4G, to give f4G

g4G(x) = ((x mod 3) > 0)
⌊
φ(x mod 3)−3(5(

⌊
φ(

⌊
x/3

⌋
+ 1)

⌉
−

⌊
φ
⌊
x/3

⌋⌉
) + 3)

⌉
+5

⌊
φ
⌊
x/3

⌋⌉
+ 3

⌊
x/3

⌋ (A14)

f4G(x) = ( fV ◦ g4G)(x) = fV(g4G(x))

f4G(x) = ((x mod 3) > 0)
⌊
φ(x mod 3)−3(8(

⌊
φ(

⌊
x/3

⌋
+ 1)

⌉
−

⌊
φ
⌊
x/3

⌋⌉
) + 5)

⌉
+8

⌊
φ
⌊
x/3

⌋⌉
+ 5

⌊
x/3

⌋ (A15)

Values for the function f4G are given in Table (3).
Note that if we substitute 2 by 5, 3, 5 and 1 by 3, 2, 3 in the word (A13), we obtain dg4G(Z):

dg4G(x) = g4G(x + 1) − g4G(x) (A16)

Further conditions are required for a point of the canonical coordinate system to belong to the
E8-CQC, formulated in term of canonical elimination function. The elimination function has two
steps. First, there is a planar elimination function selecting all acceptable pairs {x, y} (where x and y
are already images of an enumeration function, for example f or g). This is a "sieve" process on Z2

or on any projection of a volumetric shape in which we want the model set texture. It has to be done
once and is of order 2 while the whole volumetric computation is of order 3 of the size, and linear in
the number of point obtained, that can be precisely predicted by the known density.

The step 1 mentioned above will give us a list of points {x, y} in fV(Z2). The step 2 consists
on computing a discrete fiber on each point obtained from step 1. The fiber selection will be
done through the volumetric elimination function depending on three variables, fV(x), fV(y), fV(z).
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Depending on the volumetric shape we are interested, fV(z) will be bounded between min fV(z) and
max fV(z) for each fiber. We define two functions of x and y valued in Z

8Z :

hx8(x, y) =(−x + 2y − 3
⌊
x/φ

⌉
− 3

⌊
y/φ

⌉
) mod 8 (A17)

hy8(x, y) =(−3x − 4y − 3
⌊
x/φ

⌉
+ 3

⌊
y/φ

⌉
) mod 8 (A18)

The values for hx8(x, y) are explained in figures A1 and A2.

a. b. c.

d. e. f.

Figure A1. a. hx8(x, y), b. hy8(x, y), c. hx8(x, y) mod 4, d. hy8(x, y) mod 4, e. hx8(x, y) +
hy8(x, y) mod 4, f. like e for 200 points, the color yellow representing the value 0 and orange 4 of selected
points

a. b. c.

d. e. f.

Figure A2. a. hx8 ◦ f (x, y), b. hy8 ◦ f (x, y), c. hx8 ◦ f (x, y) mod 4, d. hy8 ◦ f (x, y) mod 4, e.
hx8 ◦ f (x, y) + hy8 ◦ f (x, y) mod 4, f. like e for 200 points, the color yellow representing the value 0 and
orange 4 of selected points

Z” = {x, y ∈ Z′|xm8(x, y) = ym8(x, y) & ym8(x, y) ≡ 0 mod 4}. (A19)

The density of Z”, the probability of a pair of integer to be in Z” is: δZ” = 1/36. The density
of Z” in Z′2 , the probability of an pair of Z′-integer to be in Z” is: δ′Z” = 1/16.
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x 0 1 2 3 4 5 6 7 8 9 10
x” 0 12 19 31 38 50 61 69 80 92 99
x′ 0 6φ+ 2 8φ+ 6 14φ+ 8 16φ+ 12 22φ+ 14 28φ+ 16 30φ+ 20 36φ+ 22 42φ+ 24 44φ+ 28
x′ 0 11.708 18.944 30.652 37.889 49.597 61.305 68.541 80.249 91.957 99.193

Table 1: Table of values for x, x”, x′ ∈ D, x′ ∈ R

We may use the shortcut notation Z′ = Zπ1 and Z” = Zπ2 to exhibit the analogy between
subsets and self-projective lines or planes.

1. The canonical planar elimination function h(x, y) is encoding the fact that the E8-CQC is a
slice of an Elser-Sloane projection of the E8 Lattice:

h(x, y) = hx8(x, y) ≡ 0 (mod 4) ∧ hy8(x, y) ≡ 0 (mod 4) (A20)

2. The canonical volumetric elimination function h(x, y, z) is encoding the fact that the E8-CQC
is a slice of an Elser-Sloane projection of the E8 Lattice:

h(x, y, z) =



−1 2 0 −3 −3 0
−1 −4 2 1 1 2
−3 −4 2 −3 1 −4
−1 −4 −4 1 −1 −2
−1 2 2 −1 −3 2
1 2 2 3 −3 0
−3 −4 0 −3 3 0
−3 2 −4 −3 −3 −2


.{x, y, z,

⌊
x/φ

⌉
,
⌊
y/φ

⌉
,
⌊
z/φ

⌉
} ≡ (0||4) (mod 8)

(A21)
(so either the 8 values of the vector are congruent to 0 modulo 8, or they are all congruent
to 4 modulo 8, the matrix given in equation (A21) is deduced from the orientation of the six
dimensional subspace of E8 projecting by Elser-Sloane projection to the selected 3-dimensional
slice in which x′, y′, z′ is living)

3. The canonical spherical elimination function s(x, y, z) is encoding the fact that the star map
image is restricted to a sphere of radius φ − 1

s(x, y, z) = ?(x)2 + ?(y)2 ? (w)2 < r2 (A22)

Finally the model set coordinates x′, y′, z′ in D3, and the coordinates x”, y”, z” in Z3, here called
crystal proxy, are deduced from the set of {x, y, z} by the bijections between x, x′ and x” (and the
same for y and z).

x′(x) =10x −
√

20? (x) (A23)

x(x′) =
⌊
x′/10

⌉
(A24)

x”(x) =10x −
⌊√

20? (x)
⌉

(A25)

x(x”) =
⌊
x”/10

⌉
(A26)

x′(x”) =10
⌊
x”/10

⌉
−
√

20? (
⌊
x”/10

⌉
) (A27)

x”(x′) =
⌊
x′
⌉

(A28)

Numerical values are given in Table(1).
The last equation defines and justifies the name of crystal proxy for the object in the double-

prime coordinate. It is embedded in Z3 (or Zn for a generalization), and therefore a subset of a
lattice or crystal, but it is at a distance smaller than one in each coordinate from the exact model set
point in prime coordinates. Crystal proxy coordinates are advantageously and efficiently used for
graphics representations of the model sets, because the differences are close to invisible.

We refer you to [50] for deeper insight in python and Wolfram language implementations.
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k 0 1 2 3 4 5 6 7 8 9
x = fV (k) 0 2 3 5 6 8 10 11 13 15

x” 0 19 31 50 61 80 99 111 130 149
x′ 0 8φ+ 6 14φ+ 8 22φ+ 14 28φ+ 16 36φ+ 22 44φ+ 28 50φ+ 30 58φ+ 36 66φ+ 42
x′ 0 18.944 30.652 49.597 61.305 80.249 99.193 110.90 129.85 148.79

?(x) 0 2φ − 3 3φ − 5 5φ − 8 6φ − 10 8φ − 13 10φ − 16 11φ − 18 13φ − 21 15φ − 24
?(x) 0 0.23607 −0.14590 0.090170 −0.29180 −0.055728 0.18034 −0.20163 0.034442 0.27051

Table 2: Table of values for x, x”, x′,?(x) for x = fV(k) such that ?(x) < 1
2φ
−1

k 0 1 2 3 4 5 6 7 8
x = f4G(k) 0 8 13 21 26 29 34 42 47

x" 0 80 130 210 260 290 340 420 470
x′ 0 36φ+ 22 58φ+ 36 94φ+ 58 116φ+ 72 130φ+ 80 152φ+ 94 188φ+ 116 210φ+ 130
x 0 80.249 129.85 210.10 259.69 290.34 339.94 420.19 469.79
x∗ 0 8φ − 13 13φ − 21 21φ − 34 26φ − 42 29φ − 47 34φ − 55 42φ − 68 47φ − 76
x∗ 0 −0.0557 0.0344 −0.0212 0.0688 −0.0770 0.0131 −0.0425 0.0475

Table 3: Table of values for x, x”, x′, x∗ = ?(x) for x = f4G(k) such that ?(x) < 3
2φ
−7

Appendix C. Aperiodic Functions
As discussed in the main text, one implication of having an underlying structure such as

the proposed model sets is that one has to describe general relational evolution with regard to
such clock structures. The more obvious properties of models sets are in most cases described
by aperiodic functions, which goes back to [51]. An general example of this kind of function is
given by sin(2πx) + cos(2παx) with α an irrational number. This aperiodic function is related
to a Z2-periodic function of two variables via sin(2πx) + cos(2πy)|y=αx. Using such a function
would amount to have one aperiodic clock in lower dimension or to deal with a notion of higher
dimensional clocks. Let us see some concrete examples from model sets. For a sample of a point set
of E8-CQC derived by using 6-dimensional canonical windows we get a relation between distance
in parallel space and perpendicular space as shown in Figure A3.

Figure A3. Distance in parallel space versus perpendicular space for E8-CQC.

Consider as a second example the two point correlation function for hits, Eq. (21), which
depends on products of Hκi

i j weights Eq. (13), Eh[Hκi
i j ], where the spherical approximation of

the windows allows us to compute it as function of the distance between κi and κ j for the same
window of fixed radius, such as in Eq. (30). This is equivalent to fix one inflation window spherical
approximation with center at origin and radius R0, Ki

R0
, and translating a copy to distance d0 j,

with Hh
0 j(d) =

(
Vol(Ki

R0
) ∩ (d? + Ki

R0
)
)
/Vol(Ki

R0
) and with d0 j such that d? ⊂ KRl

0
and KRl

0

the spherical approximation of the larger cut window Kl
κ, given Eh[Hκi

i j ] ∼
∏

l Hh
0l. In terms of

indicator functions 1K we have Hh
0 j(d) = 1

Vol(Ki
R0
)

∫
Ki

R0
1Ki

R0
(y)1(d?+Ki

R0
)(y)dy, which has well
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known Fourier transform, Ĥh
0 j(d̄) = |A(d̄)|

2, with d̄ ∈ L, the projection to parallel space of the dual
embedding lattice, and with the amplitudeA(d̄) given by

A(d̄) =
1

Vol(Ki
R0
)

∫
KRi

0

e2πiyd̄?dy =
3(sin(z) − zcos(z))

(z)
, (A29)

where z = 2πR0|d̄?|. Figure A4 gives the general form of the Fourier transform of Eh[Hκi
i j ], which

depends on R0 of specific κi and the average distance between κi’s in a specific model set.

Figure A4. The Fourier transform of expected value Eh[Hκi
i j ].

Another example, which could give an aperiodic discrete clock, is given by the diffraction
spectrum, Eq. (A5), where the intensities coefficients are given from Eq. (A29). The diffraction for
the E8-CQC is shown in Figure A5

Figure A5. The diffraction for E8-CQC as function of the norm in parallel Space (x).
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