Preprint
Article

Rolling Element Bearing Fault Time Series Prediction Using Optimized MCKD-LSTM Model

Altmetrics

Downloads

330

Views

222

Comments

0

Submitted:

20 November 2021

Posted:

22 November 2021

You are already at the latest version

Alerts
Abstract
This paper realizes early bearing fault warning through bearing fault time series prediction, and proposes a bearing fault time series prediction model based on optimized maximum correlation kurtosis deconvolution (MCKD) and long short-term memory (LSTM) recurrent neural network to ensure bearings operation reliability. The model is based on lifecycle vibration signal of the bearing, to begin, the cuckoo search (CS) is utilized to optimize the parameter filter length L and deconvolution period T of MCKD, taking into account the influence and periodicity of the bearing time series, the fault impact component of the optimized MCKD deconvolution time series is improved. Then select the LSTM learning rate α depending on deconvolution time series. Finally, the dataset obtained through various preprocessing approaches are used to train and predict the LSTM model. The average prediction accuracy of the optimized MCKD-LSTM model is 26 percent higher than that of the original time series, proving the efficiency of this method, and the prediction results track the real fault data well, according to the XI'AN JIAOTONG University XJTU-SY bearing dataset.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated