Preprint
Article

Selective Scandium (Sc) Extraction from Bauxite Residue (Red Mud) Obtained by Alkali Fusion-Leaching Method

Altmetrics

Downloads

392

Views

244

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 November 2021

Posted:

23 November 2021

You are already at the latest version

Alerts
Abstract
One of the potential sources of rare-earth elements (REEs) is the solid waste from alumina industry - bauxite residue, known as “red mud” (RM). The main REEs from the raw bauxite are concentrated in RM after the Bayer leaching process. The earlier worldwide studies were focused on the scandium (Sc) extraction from RM by concentrated acids to enhance the extraction degree. This leads to the dissolution of major oxides (Fe2O3 and Al2O3) from RM. This article studies the possibility of selective Sc extraction from alkali fusion red mud (RMF) by diluted nitric acid (HNO3) leaching at pH ≥ 2 to prevent co-dissolution of Fe2O3. RMF samples have been analyzed by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and inductively coupled plasma mass spectrometry (ICP-MS). Sc extraction has been found to be 71.2 % at RMF leaching by HNO3 at pH=2 and at 80 °C during 90 min. The kinetic analysis of experimental data by the shrinking core model has shown that Sc leaching process is limited by the interfacial diffusion and the diffusion through the product layer. The apparent activation energy (Ea) was 19.5 kJ/mol. We have established that according to EPMA of RMF, Sc is associated with iron minerals; it could act as the product layer. The linear dependence of Sc extraction of magnesium (Mg) extraction has been revealed. This fact indicates that Mg can act as a leaching agent of Sc presented in RMF by ion-exchangeable phase.
Keywords: 
Subject: Chemistry and Materials Science  -   Chemical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated