

Article

A Cost-Benefit Analysis of COVID-19 Vaccination in Catalonia

Francesc López ^{1,2,*}, Martí Català ³, Clara Prats ^{3,4}, Oriol Estrada ¹, Irene Oliva ^{1,2}, Núria Prat ⁵, Mar Isnard ⁵, Roser Vallès ⁵, Marc Vilar ⁵, Bonaventura Clotet ⁶ and Jordi Ara ¹

¹ Directorate for Innovation and Interdisciplinary Cooperation, North Metropolitan Territorial Authority, Catalan Institute of Health; flopezse.germanstrias@gencat.cat (F.L); innovacio.mn.ics@gencat.cat (O.E); irene.olr.12@gmail.com (I.O); gterritorial.mn.ics@gencat.cat (J.A)

² Centre for Research in Health and Economics, Pompeu Fabra University; flopezse.germanstrias@gencat.cat (F.L); irene.olr.12@gmail.com (I.O)

³ Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol; mcatala@igtp.cat (M.C); clara.prats@upc.edu (C.P)

⁴ BIOCOM-SC, Physics Department, Universitat Politècnica de Catalunya; clara.prats@upc.edu (C.P)

⁵ North Metropolitan Primary Care Directorate, Catalan Institute of Health; nprat@gencat.cat (N.P); misnard.bnm.ics@gencat.cat (M.I); rvallesf@gencat.cat (R.V); mvilar@gencat.cat (M.V)

⁶ IrsiCaixa AIDS Research Institute, University Hospital Germans Trias i Pujol; bclotet@irsicaixa.es (B. C)

* Correspondence: flopezse.germanstrias@gencat.cat

Abstract: (1) Background: in epidemiological terms, it has been possible to calculate the savings in health resources and the reduction in health effects of COVID vaccines. From the point of view of economic evaluation, some studies have estimated its cost-effectiveness with the vaccination showing highly favorable results, which in some cases is cost-saving; (2) Methods: a cost-benefit analysis of the vaccination campaign in the North Metropolitan Health Region (Catalonia). An epidemiological model based on observational data and before and after comparison is used. The information on the doses used and the resources assigned (conventional hospital beds, ICU, number of tests) has been extracted from administrative data from the largest Primary Care provider in the region (Catalan Institute of Health). A distinction is made between the social perspective and the health system; (3) Results: the costs of vaccination are estimated at 137 million euros (€48.05/dose administered). This figure is significantly lower than the positive impacts of the vaccination campaign, which are estimated at 470 million euros (€164/dose administered). Of these, 18% corresponds to the reduction of ICU discharges, 16% to the reduction in conventional hospital discharges, 5% to the reduction in PCR tests and 1% to the reduction of RAT tests. Monetization of deaths and cases with sequelae avoided account for 53% and 5% of total savings, respectively. The benefit/cost ratio is estimated at 3.4 from a social perspective and 1.41 from a health system perspective. The social benefits of vaccination are estimated at €116.67 per dose of vaccine given (€19.93 from the point of view of the health system); (4) Conclusions: the mass vaccination campaign against COVID is cost-saving. From a social perspective, most of these savings come from the monetization of the reduction in mortality and cases with sequelae, although the intervention is equally widely cost-effective from the point of view of the health system thanks to the reduction in the use of resources. It is concluded that, from an economic perspective, the vaccination campaign has high social returns.

Keywords: cost benefit analysis; vaccination; COVID-19; health economics; economic appraisal; pharmacoeconomics

1. Introduction

The COVID-19 global pandemic has made the development of vaccines necessary in order to increase the population's immunity by stimulating the production of antibodies against the infection. In October 2021 there are 23 vaccines accepted by the competent authorities and 429 are in the testing phase [1]. In most countries, mass vaccination has resulted in a decrease in new cases and, consequently, adverse effects on health (number of deaths, cases with sequelae) and health resources (ICU stays, patients hospitalized, laboratory tests); with a vaccinated population, waves are fewer less intense and more short-lived [2].

From the perspective of economic evaluation, some studies have estimated its cost-effectiveness, with very favourable results for vaccination [3-7], suggesting that vaccines against COVID can reduce the health care costs by up to 60% [8]. Most of these approaches have been made *ex ante* and/or using probabilistic models and highlight that the cost-effectiveness of the vaccination strategy depends on the extent of the infection and that the vaccinated population exceeds a certain minimum threshold [9,10]. The consensus, then, is that the vaccination strategy against COVID is cost-effective, evidence that is in line with the economic evaluation of other vaccines, which in Spain show net savings or favourable cost-effective ratios [11].

In Catalonia (Spain), the pandemic led to an increase in health care spending of approximately 20% in 2020, an increase that does not take into account the costs of the vaccination campaign, which only began in January of the following year [12]. As in most territories, the vaccination campaign was carried out in phases: certain groups, such as the elderly, essential staff or immunocompromised patients, have been prioritized according to the risk of catching and transmitting COVID-19 or their economic impact on society. A wide range of resources such as medical and non-medical staff, communication elements, refrigerators, cars and marquees have been employed, according to the phase. In addition to the intense dedication made during the stages of the highest incidence of the virus, the campaign has meant an extra economic effort in the public health system. In turn, however, this has reduced health care pressure very significantly [13].

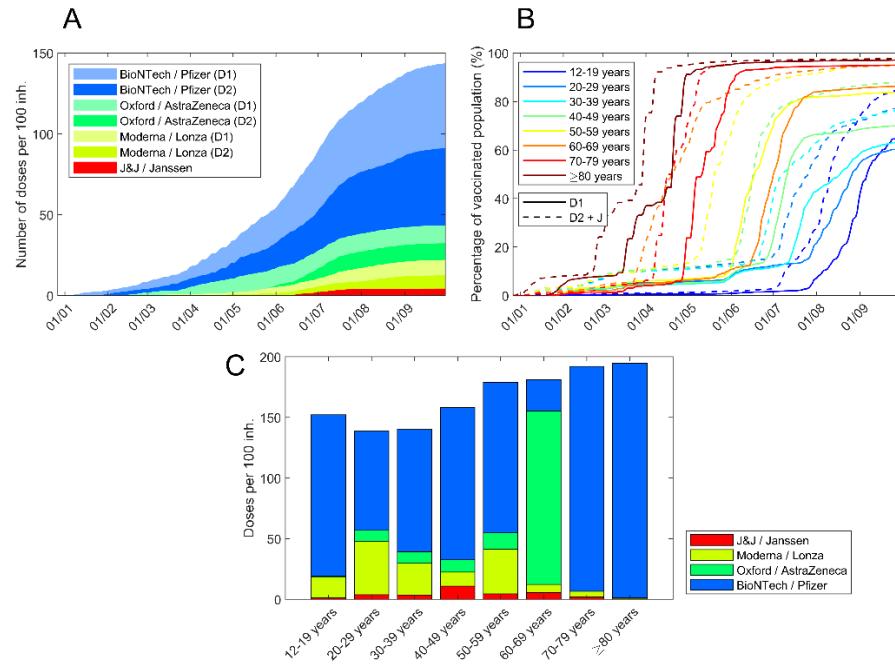
While it is true that there was no alternative to intervention, it is worthwhile comparing its costs with savings in terms of health impacts and avoided spending, an analysis which can quantify the economic returns both for society and the health system as a result of the aforementioned efforts made during the vaccination process. In this context, this study aims to perform a cost-benefit analysis of the COVID-19 vaccination strategy for Catalonia compared to a baseline in the absence of vaccination, using the social perspectives and that of the National Health System.

2. Materials and Methods

2.1 Epidemiological model

The territorial area subject to evaluation is the North Metropolitan Health Region (the most heavily populated district of the greater Barcelona metropolitan area, with a total of 1,986,032 inhabitants, accounting for 25.9% of the total population of Catalonia). The period analyzed is from 1 January 2021, the date on which it can be considered that vaccination began in Catalonia, and 30 September 2021, when the study was conducted. To identify the distribution of cases, hospitalizations, ICUs and death by age groups in the absence of the effect of vaccines, epidemiological data observed between 1 September 2020 and 31 December 2020 are used. During this period, it is estimated that the detection of cases is good and constant over time [14]. This estimate assumes that the socioeconomic context and non-pharmacological measures would have been the same in the absence of vaccines. These data are described in Table 1.

Table 1. Percentage of cases by age group, in the absence of the effect of the vaccine (epidemiological data 1 September-31 December 2020). North Metropolitan Health Region, Catalonia.


Group	Population	Cases	Hosp.	ICU	Deaths
0-9 years	187,133 (10.0%)	3,695 (5.5%)	26 (0.4%)	2 (0.2%)	0 (0.0%)
10-19 years	217,566 (11.6%)	9,346 (14.0%)	44 (0.7%)	4 (0.4%)	0 (0.0%)
20-29 years	192,940 (10.3%)	8,850 (13.3%)	134 (2.2%)	7 (0.8%)	1 (0.1%)
30-39 years	240,411 (12.8%)	8,493 (12.8%)	310 (5.1%)	38 (4.1%)	5 (0.5%)
40-49 years	330,845 (17.6%)	12,005 (18.0%)	604 (9.9%)	89 (9.7%)	11 (1.2%)
50-59 years	268,237 (14.3%)	10,137 (15.2%)	967 (15.8%)	188 (20.4%)	35 (3.7%)
60-69 years	202,241 (10.8%)	6,072 (9.1%)	1,126 (18.4%)	230 (25.0%)	72 (7.6%)
70-79 years	145,686 (7.8%)	3,981 (6.0%)	1,246 (20.3%)	260 (28.3%)	173 (18.3%)
over 80 years	93,861 (5.0%)	4,009 (6.0%)	1,674 (27.3%)	102 (11.1%)	647 (68.5%)

Source: DADESCOVID (Catalonia's official COVID data. <https://dadescovid.cat/>).

According to this approach, the savings generated by vaccination will be equal to the product of the effectiveness of the vaccine against cases, hospitalizations, ICUs and deaths, respectively, by the proportion of fully-vaccinated individuals, for the incidence reported in the pre-vaccination period in each age group. Using parameters from previous literature, it is assumed that 1% of cases suffer from some type of sequelae [15].

As can be seen in Figure 1, most of the doses supplied in the North Metropolitan Region were from Pfizer (70%), AstraZeneca (15%), Moderna (12%) and Janssen (3%). Considering the reported effectiveness of these vaccines in clinical trials [16-19] and in real setting [20], the following ranges of effectiveness have been explored: 60-80% for the incidence of cases, 85-90% in the case of hospitalizations and emergencies and 90-95% in the case of deaths. The model is calculated daily in the analysed period. Vaccines are considered to be effective 21 days after administration, the first dose (of double-dose vaccines) is 70% effective over the full vaccination and overcoming the disease is considered as having had a first dose of the vaccine (therefore, individuals who have had the virus and have been vaccinated with one dose are considered fully vaccinated) [21-23].

No third dose had been taken during the test period. Vaccination and infection data are obtained from the institutional register in groups from 10 to over 80 years (9 groups) [24]. Figure 1 shows how the vaccination process has evolved in the different age groups. The combination of data on the distribution of hospitalizations, admissions and deaths by age groups in the comparison period (in the absence of vaccines, September-December 2020) (Table 1), vaccine protection, vaccination by age groups (Figure 1) and the epidemiological data reported during the period 1 January to 20 September 2021 allows for an estimate of the number of cases, hospitalizations, ICUs and deaths avoided, which are shown in Figure 2. To calculate the number of tests (PCR and RAT) saved case data are used considering that savings in daily tests is proportional to savings in the number of daily cases.

Figure 1. Vaccination process in North Metropolitan Health Region. (A) Number of administered doses per 100 inhabitants in the region. Colour according to vaccine manufacturer. Light colours for first dose. (B) Vaccination evolution for each age range, first dose is the dashed line. Janssen vaccines are considered as a second dose. (C) Doses per 100 inhabitants in each age range. Colour depends on vaccine manufacturer.

Figure 2. Epidemiological developments with and without the effect of vaccines. (A) Cases. (B) Deaths. (C) New hospitalizations. (D) New ICUs. Base case.

2.2 Cost parameters

To calculate the average unit cost of the vaccination process, the cost analysis of the administrative register of the Territorial Management of the Catalan Institute of Health (the main Primary Care services provider in Catalonia) of the North Metropolitan Health Region is used as an approximation. For the analysis period, the different teams of this provider have administered a total of 2,040,642 vaccine doses, 71% of the total doses in this area (2,854,806). According to a review of the literature, and by the consensus of the authors, the following reference prices for vaccines are used: €15, €20, €7 and €3.5/dose for Pfizer, Moderna, Janssen and AstraZeneca, respectively. This unit cost has been extrapolated to all the vaccines administered in the territory.

The vaccination campaign has had a direct impact on aspects such as human resources and equipment (refrigerators, marquees, furniture, transport of vaccines, vehicle rental, conservation and maintenance, non-medical equipment, needles and syringes, medical equipment, cleaning and security service). While it is true that such costs have been registered, they are not representative of the real cost of vaccination insofar as they are not part of the provider's regular structural accounting and therefore do not include the depreciation of the system as a whole. Therefore, it has been considered that the figure that best approximates the cost of COVID-19 vaccine inoculation corresponds to the cost of any other vaccine, labelled as "Non-urgent nursing care health centre" (code V03PVC0021) in the catalogue of public rates [25]. Similarly, in relation to the expenditure avoided by vaccination, the reference rates of the health service contractor in Catalonia are used (ICU= €43,400/COVID discharge; hospitalization= €6,050/COVID discharge) [26]. In the case of laboratory tests (PCR and RAT), the cost reimbursed by the healthcare contractor during COVID are used. Health gains were measured in Quality-Adjusted Life Years (QALYs) associated with deaths and cases of long-term morbidity avoided and monetized according to previous studies [15].

All costs are measured for the year 2021 and are reported in euros. A distinction is made between the social perspectives (all observable effects) and the health system (impact on the expenditure of the system). No discount rate is used.

3. Results

According to the epidemiological model used, and assuming the socioeconomic context and non-pharmacological measures had been the same and depending on the range in the case of effectiveness, vaccination has led to a reduction of between 27,000 and 43,000 infections, between 11,000 and 14,500 hospital discharges, between 1,700 and 2,200 ICU discharges and between 2,600 and 4,300 deaths. It is also calculated that between 260,000 and 420,000 PCR tests and between 130,000 and 210,000 RAT tests have been saved. Table 2 shows the economic impacts of these reductions: for the base case, which uses the averages of these ranges (Scenario 1); for the upper threshold (Scenario 2: higher effectiveness of the vaccine); and for the lower threshold (Scenario 3: lower effectiveness of the vaccine).

In relation to the 2,854,806 doses of vaccine subject to analysis, and with regard to the central scenario of effectiveness, these results show that 82 doses prevent one infection, 827 doses prevent one death, 224 doses prevent one hospitalization and 1,464 doses prevent one admission to the ICU.

Table 2. Benefits of the vaccination campaign. Amounts avoided per scenario.

Perspective	Variable	Unit cost (€)	N (S1)	N (S2)	N (S3)	€M (S1)	€M (S2)	€M (S3)	€ (%) (S1)
Health System	ICU	43,400/ discharge	1,95	2,2	1,7	85	95	74	18.00%
	Hospitalizations	6,050/ discharge	12,75	14,5	11	77	88	67	16.40%
	PCR	75	340	420	260	26	32	20	5.42%
	RAT	40	170	210	130	7	8	5	1.45%
Social	Deaths	2.92 QALY/death at €25,000/	3,45	4,3	2,6	252	314	190	53.56%
	Cases with sequelae	2.78 QALY/case at €25,000/ QALY	350	430	270	24	30	19	5.17%
		€ Total saved (millions)	470	567	374				100%

Scenario 1: base model (average); Scenario 2: higher effectiveness of the vaccine; Scenario 3: lower effectiveness of the vaccine

Costs are described in Table 3. The total is €137m, of which €37.26m (13.05%) correspond to the 2,854,806 doses administered (at a weighted average price of €13.05) and €99.92m (72%) for overall cost of human resources and the depreciation of infrastructure and equipment. Total cost per administered dose is calculated to be €48.05.

Table 3. Percentage of cases by age group, in the absence of the effect of the vaccine (epidemiological data 1 September-31 December 2020). North Metropolitan Health Region, Catalonia.

Concept	Cost/dose (€)	Total costs (€M)	Cost (%)
---------	---------------	------------------	----------

HR+ Facilities	35.00	99.92	72.84%
Vaccines	13.05	37.26	27.16%
<i>Total</i>	48.05	137	100%

According to these values, the following results can be inferred: the vaccination campaign generates positive impacts at the social level, amounting in monetary terms to €164.72 (€67.98 from the point of view of the health system) per dose administered (Table 4). Subtracting the cost of vaccination, the benefit is €116.67 and €19.93, respectively. From the perspective of the health system (taking into account the savings in hospital discharges and ICU units), the benefit/cost ratio is 1.41; if in addition the monetization of the reduction of mortality and morbidity (social perspective) is taken into account, this ratio increases to 3.43. These results are robust at the lower and upper threshold of vaccine effectiveness.

Table 4. Percentage of cases by age group, in the absence of the effect of the vaccine (epidemiological data 1 September-31 December 2020). North Metropolitan Health Region, Catalonia.

Scenario	B/C Ratio (social perspective)	B/C Ratio (health system perspective)	Benefit/dose (social perspective)	Benefit/dose (health system perspective)
1 Base; Average effectiveness	3.43	1.41	116.67	19.93
2 Low effectiveness	2.72	1.2	82.81	9.75
3 High effectiveness	4.13	1.63	150.52	30.10

4. Discussion

As far as the authors are aware, this is the first study to conduct a cost-benefit analysis of the mass vaccination performance based on real data. The results suggest that vaccination campaigns for COVID-19 may have a high return for both the health care system and society as a whole. In Catalonia, the impact of mass vaccination was highly beneficial in the last waves, avoiding serious cases, deaths and sequelae, and an excessive health care and economic strain on the public health system. In view of the difficulties in vaccinating the entire population, these results strengthen the argument in favour of adopting measures which favour the universality of vaccination campaigns, such as the introduction of co-payments for people who decide not to be vaccinated despite of the evidence attesting to the safety and benefit of this measure. Extrapolating from the evidence hereby analysed and assimilating the cost structure and the total percentage of people vaccinated by population range, an estimate can be made for the whole of Catalonia and Spain (11,371,928 and 72,594,573 doses administered as of 5 November 2021) [24, 27], accounting for savings of 1,327 and 8,469 million euros (227 and 1,447 million from the point of view of the health system). It seems, therefore, that prioritizing the vaccination campaign has been a very successful strategy in terms of health policy.

Limitations

This study has several limitations. In relation to the epidemiological impact, first of all, it should be borne in mind that conclusive long-term data on the efficacy of COVID-19 vaccines are not yet available. Recent studies suggest that the vaccine provides temporary immunity against infection, while protection against severe cases (hospitalization and death) is maintained [28, 29]. For simplicity, this article assumes a case protection value of 70% taking into account these various factors and the duration of the study. In any case, the study suggests that a third dose would maintain the balance in the cost-benefit ratio and prolong its positive impacts. Secondly, this model estimates the avoided cases by direct effect of vaccination. In reality, each potentially avoided case could have resulted in a new transmission chain; therefore, the results here presented would represent a lower threshold in the number of cases, hospitalizations, ICU admissions, PCR and RAT tests and avoided deaths. In addition, it should be borne in mind that in the comparative period (second half of 2020), compared to the study period (2021), there is a factor of drift in the dominant variants in the territory (alpha and delta) towards higher infectivity.

In relation to the economic model, the study also has several limitations. First of all, macroeconomic impacts such as the savings derived from avoiding a closure of the territory's economy are not considered. It is likely that in a non-vaccination scenario, limitations in some sectors or regarding mobility would have had to be imposed, which would have entailed an economic loss that should be considered. Second, there is no official source regarding the costs per dose of vaccines: the figure used corresponds to a consensus among the authors, based on a literature review. In this sense, the work highlights the lack of transparency of official bodies in providing official data. Third, it would be reasonable to adjust the cost for doses which will expire without being administered: in the absence of better approximations, it is observed that 5.6% of purchased doses have not yet been administered [27]. Fourth, it is still to be assessed the cost to the healthcare system of the underdiagnoses arising from mandatory closures, which according to recent studies performed in Catalonia could be substantial [30, 31].

On the other hand, it should be noted that the period analysed has moments of high and low efficiency, depending on the size and type of vaccination infrastructure and demand. In this interim analysis, it should also be noted that vaccination kinetics were strongly conditioned until early spring by dose availability. Future research ought to try to identify the type of vaccination campaign which has had the highest social return.

5. Conclusions

The analysis concludes that the mass vaccination campaign against COVID is cost-saving. From a social perspective, most of these savings come from the monetization of the reduction in mortality and cases with sequelae (B/C ratio=3.4), although the intervention is equally widely cost-effective from the point of view of the health system thanks to the reduction in hospital beds and ICU and number of laboratory tests (B/C ratio=1.41). These results are robust with respect to different assumptions regarding vaccine effectiveness. It is concluded that, from an economic point of view, the vaccination campaign has high social returns.

Author Contributions: Conceptualization, F.L. and O.E.; methodology, F.L and I.O.; software, F.L.; validation, O.E. and J.A.; formal analysis, F.L. and I.O.; investigation, F.L. and I.O.; resources, O.E.; data curation, F.L.; writing—original draft preparation, F.L; writing—review and editing, F.L and I.O.; visualization, B.C. and M.V; supervision, O.E.; project administration, F.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. McGill. "COVID19 Vaccine Tracker Team. "Covid19 Vaccine tracker". Online, accessed 8 Nov 2021. Available from: <https://covid19.trackvaccines.org/>
2. Català, M. "On short-term scenarios of COVID-19 in Europe. Comparison of the epidemic dynamics between high and very high vaccinated countries". In: Analysis and prediction of COVID-19 for EU-EFTA-UK and other countries, #299. Research Report. pp. 9-15. Universitat Politècnica de Catalunya. Accessed 22 Oct 2021. Accessible at: https://biocomsc.upc.edu/en/shared/20211022_report_299.pdf
3. Kohli, Michele, et al. "The potential public health and economic value of a hypothetical COVID-19 vaccine in the United States: Use of cost-effectiveness modeling to inform vaccination prioritization." *Vaccine* 39.7 (2021): 1157-1164.
4. Siedner, Mark J., et al. "Cost-effectiveness of COVID-19 vaccination in low-and middle-income countries." *medRxiv* (2021).
5. Debrabant, Kristian and Grønbæk, Lone and Kronborg, Christian. "The Cost-Effectiveness of a COVID-19 Vaccine in a Danish Context". *Discussion Papers on Business and Economics*, University of Southern Denmark, 2/2021
6. Wang, Wei-Chun, et al. "Economic Evaluation for Mass Vaccination against COVID-19." *Journal of the Formosan Medical Association* (2021).
7. Shaker, Marcus, Elissa M. Abrams, and Matthew Greenhawt. "A cost-effectiveness evaluation of hospitalizations, fatalities, and economic outcomes associated with universal versus anaphylaxis risk-stratified COVID-19 vaccination strategies." *The Journal of Allergy and Clinical Immunology: In Practice* (2021).
8. Padula, William V., et al. "Economic value of vaccines to address the COVID-19 pandemic: a US cost-effectiveness and budget impact analysis." *Journal of Medical Economics* just-accepted (2021): 1-1.
9. Volodymyrovych, Tsekhmister Yaroslav, et al. "Pharmaco Economics Analysis of COVID-19 Vaccines in Ukraine." *Journal of Pharmaceutical Research International* (2021): 140-147.
10. Hagens, Arnold, et al. "COVID-19 Vaccination Scenarios: A Cost-Effectiveness Analysis for Turkey." *Vaccines* 9.4 (2021): 399.
11. García-Altés, Anna. "Systematic review of economic evaluation studies: Are vaccination programs efficient in Spain?" *Vaccine* 31.13 (2013): 1656-1665.
12. CatSalut. Catalan Health Service. "Any COVID: despesa". Online; accessed 8 Nov 2021. Available from: <https://catsalut.gencat.cat/ca/coneix-catsalut/any-covid/despesa/>
13. Català, M. et al. "Analysis and prediction of COVID-19 for EU-EFTA-UK and other countries". Report 236. 28 May 2021. Available from: <http://hdl.handle.net/2117/346442>
14. Català, M, Pino D, Marchena M, Palacios P, Urdiales T, Cardona PJ, Alonso S, López-Codina D, Prats C, Alvarez-Lacalle E. "Robust estimation of diagnostic rate and real incidence of COVID-19 for European policymakers". *PloS one*. 2021 Jan 7;16(1):e0243701.
15. López Seguí, F.; Estrada Cuxart, O.; Mitjà i Villar, O.; Hernández Guillamet, G.; Prat Gil, N.; Maria Bonet, J.; Isnard Blanchar, M.; Moreno Millan, N.; Blanco, I.; Vilar Capella, M.; Català Sabaté, M.; Aran Solé, A.; Argimon Pallàs, J.M.; Clotet, B.; Ara del Rey, J. "A Cost-Benefit Analysis of the COVID-19 Asymptomatic Mass Testing Strategy in the North Metropolitan Area of Barcelona". *Int. J. Environ. Res. Public Health* 2021, 18, 7028. <https://doi.org/10.3390/ijerph18137028>
16. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J. "Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine". *New England Journal of Medicine*. 2021 Feb 4;384(5):403-16.
17. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Marc GP, Moreira ED, Zerbini C, Bailey R. "Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine". *New England Journal of Medicine*. 2020 Dec 10.
18. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B, Offerdeld K. "Safety and efficacy of single-dose Ad26. COV2. S vaccine against Covid-19". *New England Journal of Medicine*. 2021 Jun 10;384(23):2187-201.
19. Voysey M, Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, Bibi S. "Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK". *The Lancet*. 2021 Jan 9;397(10269):99-111.
20. Cabezas C, Coma E, Mora-Fernandez N, Li X, Martinez-Marcos M, Fina F, Fabregas M, Hermosilla E, Jover A, Contel JC, Lejardi Y. "Associations of BNT162b2 vaccination with SARS-CoV-2 infection and hospital admission and death with covid-19 in nursing homes and healthcare workers in Catalonia: prospective cohort study". *BMJ*. 2021 Aug 18;374.
21. Mahase E. "Covid-19: One dose of vaccine cuts risk of passing on infection by as much as 50%, research shows". *BMJ* 2021.
22. Chodick G, Tene L, Patalon T, Gazit S, Tov AB, Cohen D, Muhsen K. "Assessment of Effectiveness of 1 Dose of BNT162b2 Vaccine for SARS-CoV-2 Infection 13 to 24 Days After Immunization". *JAMA network open*. 2021 Jun 1;4(6):e2115985-.
23. Ibarrondo FJ, Hofmann C, Fulcher JA, Goodman-Meza D, Mu W, Hausner MA, Ali A, Balamurugan A, Taus E, Elliott J, Krogstad P. "Primary, Recall, and Decay Kinetics of SARS-CoV-2 Vaccine Antibody Responses". *ACS nano*. 2021.
24. Dades Covid (Catalunya). Available online: www.dadescovid.cat (accessed on 22 November 2021).
25. Departament de Salut. "ORDRE SLT/71/2020, de 2 de juny, per la qual es regulen els supòsits i conceptes facturables i s'aproven els preus públics corresponents als serveis que presta l'Institut Català de la Salut". <http://cidb.diba.cat/legislacio/10263520/ordre-slt712020-de-2-de-juny-per-la-qual-es-regulen-els-suposits-i-conceptes-facturables-i-saproven-els-preus-publics-correspondents-als-serveis-que-presta-l-institut-catala-de-la-salut-departament-de-salut>
26. Departament de Salut. "ORDEN SLT/63/2020, de 8 de marzo, por la que se aprueban los precios públicos del Servicio Catalán de la Salud".

27. Ministerio de Sanidad. "Estrategia de Vacunación COVID en España". Available at: <https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/vacunaCovid19.htm>
28. Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, Frankland TB, Ogun OA, Zamparo JM, Gray S, Valluri SR. "Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study". *The Lancet*. 2021 Oct 4.
29. Barbara A. Cohn and Piera M. Cirillo and Caitlin C. Murphy and Nickilou Y. Krigbaum and Arthur W. Wallace. "SARS-CoV-2 vaccine protection and deaths among US veterans during 2021". *Science*, 2021.
30. Pifarré i Arolas, H.; Vidal-Alaball, J.; Gil, J.; López, F.; Nicodemo, C.; Saez, M. "Missing Diagnoses during the COVID-19 Pandemic: A Year in Review". *Int. J. Environ. Res. Public Health* 2021, 18, 5335. <https://doi.org/10.3390/ijerph18105335>
31. Lopez Segui F, Hernandez Guillamet G, Pifarré Arolas H, Marin-Gomez FX, Ruiz Comellas A, Ramirez Morros AM, Adroher Mas C, Vidal-Alaball J. "Characterization and Identification of Variations in Types of Primary Care Visits Before and During the COVID-19 Pandemic in Catalonia: Big Data Analysis Study". *J Med Internet Res* 2021;23(9):e29622. doi: 10.2196/29622