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Abstract: A method for generating fluoroscopic (time-varying) volumetric images using patient-
specific motion models derived from 4-dimensional cone-beam CT (4D-CBCT) images is developed. 
4D-CBCT images acquired immediately prior to treatment have the potential to accurately represent 
patient anatomy and respiration during treatment. Fluoroscopic 3D image estimation is done in two 
steps: 1) deriving motion models and 2) optimization. To derive motion models, every phase in a 
4D-CBCT set is registered to a reference phase chosen from the same set using deformable image 
registration (DIR). Principal components analysis (PCA) is used to reduce the dimensionality of the 
displacement vector fields (DVFs) resulting from DIR into a few vectors representing organ motion 
found in the DVFs. The PCA motion models are optimized iteratively by comparing a cone-beam 
CT (CBCT) projection to a simulated projection computed from both the motion model and a refer-
ence 4D-CBCT phase, resulting in a sequence of fluoroscopic 3D images. Patient datasets were used 
to evaluate the method by estimating the tumor location in the generated images compared to man-
ually defined ground truth positions. Experimental results showed that the average tumor mean 
absolute error (MAE) along the superior-inferior (SI) direction and the 95th percentile in two patient 
datasets were (2.29 mm and 5.79 mm) for patient 1 and (1.89 mm and 4.82 mm) for patient 2. This 
study has demonstrated the feasibility of deriving 4D-CBCT-based PCA motion models that have 
the potential to account for the 3D non-rigid patient motion and localize tumors and other patient 
anatomical structures on the day of treatment. 

Keywords: principal component analysis (PCA); motion model; respiratory-correlated four-dimen-
sional cone-beam CT (4D-CBCT); lung cancer; stereotactic body radiotherapy (SBRT), image-guided 
radiation therapy (IGRT) 
 

1. Introduction 
Respiratory-induced organ motion is a major source of uncertainty in stereotactic 

body radiotherapy (SBRT) of thoracic and upper abdominal cancers [1]. Respiratory mo-
tion can result in motion artifacts during image acquisition and limitations in both radio-
therapy planning and delivery. Respiratory-correlated, or four-dimensional (4D) com-
puted tomography (4DCT), as an image-guided radiation therapy (IGRT) tool, provides a 
solution to obtain high quality CT images in the presence of respiratory motion [2]. Thus, 
4DCT became a standard method in radiotherapy treatment planning to account for organ 
motion, reduce motion artifacts, and reduce associated uncertainties. 

Image-based motion modeling of patient anatomy during radiotherapy can be useful 
in accurately localizing tumors and other anatomical structures in the body [3–7]. There 
are many approaches proposed for image-based motion modeling. Principal component 
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analysis (PCA)-based motion modeling has proven its efficacy in representing the spatio-
temporal relationship of the entire lung motion [8]. Because of their compactness and per-
formance, PCA motion models are being used along with projection images captured at 
the day of treatment for generating time-varying volumetric images, often called fluoro-
scopic because they are produced in a continuous fashion similar to the images produced 
using the well-known fluoroscopy procedure [9–16]. PCA motion models are derived by 
applying PCA on the displacement vector fields (DVFs) that result from applying deform-
able image registration (DIR) between the 4DCT phases and a reference phase chosen 
from the same set. PCA distills the large dataset of DVFs into a few eigenvectors and co-
efficients representing lung motion [8,12,14,16,17]. Since 4DCT images are acquired at the 
time of treatment planning, which happens days or weeks before the treatment delivery 
day, PCA motion models derived from them may not accurately represent patient anat-
omy or motion patterns at the day of treatment delivery [14]. Consequently, they may not 
account for tumor baseline shifts that are observed frequently in the clinic [18]. 

Respiratory-correlated, or four-dimensional (4D) cone-beam CT (4D-CBCT) has been 
introduced and used in radiotherapy for many clinical tasks such as image guidance and 
target verification just prior to treatment delivery [19]. 4D-CBCTs are reconstructed by 
first assigning the raw CBCT projections into several bins depending on the respiratory 
phases they exhibit, then, 3D images are reconstructed from each bin. Several methods 
have been used to estimate respiratory motion corresponding to the raw CBCT projec-
tions. These methods include using external equipment, such as external markers or ab-
dominal belts, internal implanted radiopaque fiducial markers, or marker-free pure im-
age-based approaches [20–27]. On-board 4D-CBCT images are produced at the day of 
treatment delivery while the patient is in treatment position. Thus, motion models derived 
from 4D-CBCT images have the potential to account for the inter-fraction anatomical mo-
tion variations that can occur between the planning and treatment delivery phases, which 
may not be handled using 4DCT-based motion models. 

Previous research has been conducted to derive PCA motion models from 4D-CBCT 
images [9,10,28,29]. In [9,10], PCA motion models were derived from datasets of 4D-CBCT 
images of simulated patients using the XCAT phantom [30–32] and an anthropomorphic 
physical phantom. This work showed the feasibility and reliability of estimating anatom-
ical motion using 4D-CBCT-based motion models compared to 4DCT-based motion mod-
els. However, the experiments were only applied to phantom datasets and hence its effi-
cacy on clinical patient datasets has not been verified. In another study, PCA motion mod-
els were derived from datasets of patients’ 4D-CBCT images taken at different treatment 
days to quantify the inter-fraction variations of these motion models [28,29]. However, 
these 4D-CBCT-based PCA motion models were not applied for further clinical tasks such 
as generating fluoroscopic 3D images or localizing tumors and/or other anatomical struc-
tures of the patients at the time of treatment delivery.  

In this paper, we propose to: 1) derive PCA motion models from patient 4D-CBCT 
images captured immediately before treatment delivery; and 2) use these 4D-CBCT-based 
motion models to estimate fluoroscopic 3D images based on CBCT projections captured 
immediately before treatment delivery. The proposed work is an extension to the previous 
work [9,10] where the methods were tested on digital phantom datasets and anthropo-
morphic physical phantom datasets. In this paper, the methods are applied on patient 
datasets to demonstrate the feasibility of considering this approach in clinical settings. The 
rest of the paper is organized as follows. Section 2 presents the materials and methods. 
Section 3 presents the experimental results. The results are discussed in Section 4. Section 
5 concludes the paper. 

 

2. Materials and Methods 

2.1. Datasets 
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CBCT projections for two patients were acquired using the Elekta Synergy system 
(Elekta Oncology Systems Ltd., Crawley, West Sussex, UK) and used retrospectively in 
this study. This retrospective research protocol qualified for exempt approval from the 
Institutional Review Board (IRB) of the American University of Sharjah, United Arab 
Emirates, on August 23, 2021 (IRB 18-425). The projections were acquired over 200 degree 
rotations at 5.5 fps in 4 minutes. The total number of projections is 1320 in the first patient 
dataset and 1356 in the second patient dataset. The dimensions of the projections are 512 
× 512 pixels in both datasets. 4D-CBCT images were reconstructed from each projection 
dataset. To do so, the projections were sorted into six phase bins according to their corre-
sponding respiratory status estimated using the “Amsterdam Shroud” method [33,34]. 
The FDK reconstruction algorithm [35] implemented in Reconstruction ToolKit (RTK) [36] 
was used to reconstruct 3D images from each projection bin which resulted in 4D-CBCT 
images of six phases. The dimensions of each of the reconstructed images are 176 × 228 × 
256 voxels, with 1.1 as the voxel size. 

The ground truth tumor location for the patient datasets was found by manually 
identifying the diaphragm location in each projection. A simple graphical user interface 
was programmed in MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA) and 
used for that purpose. To estimate the coordinates of the tumor in each projection, the 
diaphragm apex coordinates were identified in each projection and used in a linear re-
gression model to estimate the tumor coordinates. To compare the ground truth 2D coor-
dinates with the tumor 3D coordinates in the estimated fluoroscopic 3D images, the tumor 
coordinates in the estimated fluoroscopic 3D images are projected onto a 2D flat panel 
detector. The distance between the 2D projected and ground truth coordinates was calcu-
lated in the plane of the detector, and then scaled down to an approximate error inside 
the patient (at isocenter). A similar procedure was followed in previous publications 
[10,16,37]. 

Figure 1 shows axial, coronal, and sagittal slices of peak-exhale 4D-CBCT from each 
patient. The peak-exhale phase phase was selected as the reference phase to which all 
other 4D-CBCT phases are deformed in the DIR module.  

 

 
(a)      (b)          (c) 

Figure 1. Sample phase (peak-exhale) 4D-CBCT from patient #1 (top) and patient #2 (bottom): (a) 
axial, (b) coronal, (c) sagittal slices. 
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2.2. Fluoroscopic 3D image estimation  
Fluoroscopic 3D image estimation is accomplished in two steps: 

2.2.1. 4D-CBCT-based motion model estimation 
DIR is applied to each 4D-CBCT phase with respect to a reference phase chosen from 

the same set. In this work, the peak-exhale phase was chosen as the reference phase. A 
Demons DIR algorithm implemented on a graphics processing unit (GPU) is used in this 
study [38]. Applying DIR on pairs of phases results in a set of DVFs describing the voxel-
wise displacements between each pair of phases.  

As the resulting DVFs represent a huge dataset, a dimensionality reduction approach 
is used to transform this dataset from the original high-dimensional space into a low-di-
mensional one while retaining the properties of the original data. PCA was employed as 
a linear dimensionality reduction method. PCA is applied on the DVFs which results in a 
set of eigenvectors and eigenvalues representing the motion of the patient [8]. The set of 
DVFs can be represented as a weighted sum of these eigenvectors and eigenvalues as fol-
lows: 

𝑫 =  𝑫ഥ +  ∑ 𝒗𝒊 𝒖𝒊(𝒕)𝑵
𝒊ୀ𝟏 ,   (1) 

where 𝑫 is the DVF dataset, 𝑫ഥ  is the mean DVF, 𝒖𝒊(𝒕) are the PCA eigenvalues de-
fined in time, 𝒗𝒊  are the eigenvectors defined in space, and N is the number of 
eigenmodes considered. The eigenvectors can be sorted according to their corresponding 
eigenvalues such that eigenvectors corresponding to the largest eigenvalues represent 
large fraction of the variance of the original data. Previous studies have shown that the 
first few (2-3) eigenvectors, corresponding to the largest eigenvalues, are sufficient to rep-
resent the motion patterns existing in the original dataset [10,12,29]. In this work, the first 
three eigenvectors are considered as the motion model. 
2.2.2 Optimization 

An optimization approach is used to estimate the fluoroscopic 3D images. This ap-
proach involves three inputs: 1) the motion model (a set of 3 eigenvectors with corre-
sponding eigenvalues); 2) the 4D-CBCT reference phase; and 3) the CBCT projections cap-
tured immediately before treatment, while the patient is in treatment position immedi-
ately before treatment. The working principle of this optimization approach is to itera-
tively update the motion model by minimizing a cost function representing the squared 
L2-norm of the difference between a CBCT projection captured at treatment time and a 2D 
projection computed using both the motion model and the 4D-CBCT reference phase. The 
cost function is represented by: 

𝐦𝐢𝐧
𝒖

𝑱(𝒖) =  ‖𝑷 ∙ 𝒇(𝑫(𝒖), 𝒇𝟎) −  𝝀 ∙ 𝒙‖,  (2) 

where 𝒇𝟎 is the 4D-CBCT reference phase, 𝑫(𝒖) are the parameterized DVFs, 𝒇 is 
the estimated fluoroscopic 3D image, 𝑷 is the projection matrix used to compute the pro-
jection from the fluoroscopic 3D image f, 𝒙 is the CBCT projection at treatment delivery 
day, and 𝝀 is the relative pixel intensity between the 2D computed projection and the 
CBCT projection 𝒙. The cost function is minimized using a version of gradient descent as 
explained in the appendix in [16]. Figure 2 presents the flowchart of the fluoroscopic 3D 
image estimation algorithm. 
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Figure 2. Flowchart of the fluoroscopic 3D image estimation algorithm 

In this approach, a linear relationship between the intensities of the CBCT projections 
and the computed projections using the motion model is assumed. However, some factors 
may disturb this assumption such as noise and the quality of the 4D-CBCT images being 
used to compute the 2D projections. To reduce the effect of these factors, a region of inter-
est (ROI) was chosen from both the CBCT projection and the computed projection to re-
duce the effect of the noise and artifacts existing in the whole images and enhance the 
accuracy of the optimization. The ROI was chosen to surround the tumor and the dia-
phragm which are the most visible structures in the image exhibiting breathing motion. 

 

2.3. Evaluation 
The method is evaluated by finding the tumor localization error, which is calculated 

as the mean absolute error (MAE) of the tumor centroid location in the estimated fluoro-
scopic 3D images. This error value is measured by taking the mean absolute difference 
between the tumor centroid location in the estimated fluoroscopic 3D images and the 
ground truth locations. The process of estimating ground truth tumor coordinates is de-
scribed in 2.1. The 3D tumor coordinates in the estimated fluoroscopic 3D images are pro-
jected onto a 2D flat panel detector to be able to compare them with the 2D ground truth 
tumor coordinates. The error is measured along the superior-inferior (SI) direction in pa-
tient coordinates. 

3. Results 
In this section, the estimated motion models and fluoroscopic 3D images are evalu-

ated. Figure 3 (a) shows the eigenvalue spectrum for the PCA motion models for patient 
#1 and patient #2. It can be observed that the eigenvalues decrease with higher 
eigenmodes and drop drastically after the third eigenmode in both patients. Figure 3 (b) 
shows the percentage of the variance explained by each eigenmode in each patient. It 
shows both the individual and cumulative explained variances. As can be seen from the 
figure, the first three eigenmodes can explain most of the variance (97.1% in patient #1) 
and (97.4% in patient #2).  
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  (a)            (b) 

Figure 3: Variance explained by eigenvectors. (a) eigenvalues’ spectrum of the motion models of 
patient #1 and patient #2 (b) Explained variance ratio of the motion models of patient #1 and pa-
tient #2.  

The PCA motion models derived from 4D-CBCT images were used to estimate the 
fluoroscopic 3D images. Figure 4 shows a CBCT projection and the corresponding 2D pro-
jection computed using the estimated motion model and the 4D-CBCT reference image. 
A scatter plot showing the linear correlation between the intensities of the two images is 
shown. As can be seen from the figure, a linear correlation is found with a correlation 
coefficient of 96%. 

 

  
    (a)        (b)              (c) 

Figure 4. (a) sample CBCT projection from patient #2, (b) corresponding computed projection us-
ing the motion model and the 4D-CBCT reference phase, and (c) a scatter plot showing the correla-
tion between the intensities of the two images in (a) and (b). A linear correlation is found between 
the two image intensities with a correlation coefficient of 96%. 

Figure 5 shows axial, coronal, and sagittal slices of a sample estimated fluoroscopic 
3D image from patient #2. Figure 6 shows coronal slices of two estimated fluoroscopic 3D 
images from patient #2 at different breathing phases. As can be noticed from Figure 6, the 
estimated fluoroscopic images were able to capture the anatomical motion represented in 
the CBCT projections used in the optimization module. 
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(a)     (b)             (c) 

Figure 5. Sample estimated fluoroscopic 3D image from patient #2 dataset: (a) axial, (b) coronal, 
and (c) sagittal slices. 

  
 (a)         (b) 

Figure 6. Coronal slices of two estimated fluoroscopic 3D images from patient #2 dataset at differ-
ent breathing phases. 

To evaluate the accuracy of the estimated fluoroscopic images, the SI tumor position 
in the estimated images is estimated and compared to its ground truth location. Figure 7 
shows the SI tumor position in all the estimated fluoroscopic 3D images compared to the 
ground truth tumor positions in mm for patient #1 (a) and patient #2 (b). The tumor MAE 
along the SI direction was 2.29 mm with 95th percentile of 5.79 mm for patient #1 and 1.89 
mm with 95th percentile of 4.82 mm for patient #2. 

 
(a) 
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(b) 

Figure 7. SI tumor position in the estimated fluoroscopic 3D images using motion models derived 
from 4D-CBCT images of patient #1 (a) and patient #2 (b).  

4. Discussion 
In this work, the feasibility of building patient-specific motion models from 4D-CBCT 

images and using them, along with a set of CBCT projections captured at the time of treat-
ment delivery, to generate fluoroscopic 3D images has been studied. The 4D-CBCT-based 
motion models have the potential to overcome an important shortcoming of the 4DCT-
based motion models in that they can reflect the patient anatomy and motion at the time 
of treatment delivery. These fluoroscopic 3D images can be used in several clinical appli-
cations such as delivered dose verification [39,40]. 

The methodology used in this work involved two main steps: deriving the PCA mo-
tion model and the optimization approach to estimate the fluoroscopic 3D images. The 
method was evaluated on two patient datasets. The resulting PCA 4D-CBCT-based mo-
tion models that were used in this work were analyzed in Section 3. As mentioned in 
Figure 3, the first few eigenmodes of these PCA motion models explained most of the 
variance in the DVF dataset. Based on this, the rest of the eigenmodes were dropped safely 
as they do not hold significant information. These results support the findings of other 
studies that have shown that a few eigenmodes (2-3) are sufficient to represent the organ 
motion represented by the DVFs [10,12,16,29]. The iterative optimization approach was 
shown to converge after several iterations which resulted in producing optimized fluoro-
scopic 3D images representing the anatomical motion of the patient. The algorithm was 
implemented to run efficiently on a GPU (NVIDIA GeForce GTX 1070, 8 GB VRAM). The 
DIR algorithm takes an average of 17.25 s to register a 4D-CBCT phase to the reference 
phase. The optimization step needs an average of 1.25 s to estimate a fluoroscopic 3D im-
age, including the time required to estimate the tumor location.  

Comparing this error to other studies using 4D-CBCT-based motion model derived 
from phantom datasets [10], it can be noticed that the error in this study is slightly higher. 
Given the complexities of the breathing patterns of the real patients and the poor quality 
of the 4D-CBCT images, having a higher tumor is expected. DIR accuracy is a key deter-
minant of motion model accuracy. DIR yields the DVFs upon which the motion model is 
based. The DIR algorithm used in this study is the Demons algorithm [38]. In a previous 
fluoroscopic 3D image generation study using 4DCT images, the authors investigated the 
effect of DIR performance on the overall method accuracy [16]. It was observed that the 
error caused by DIR is negligible. In that study, the error was mainly attributed to optimi-
zation step of the method, specifically the mapping between the CBCT projection and the 
computed one.  

One of the major challenges facing building motion models from 4D-CBCT images is 
the poor quality of the 4D-CBCT images used as input. The limited number of projections 
available for reconstruction of each 4D-CBCT bin are a key reason for the relatively poor 
quality of 4D-CBCT images. The effect of the quality of the 4D-CBCT images in fluoro-
scopic 3D image estimation has been investigated in [10]. The authors conducted an ex-
periment using two sets of 4D-CBCT images simulated using digital XCAT phantom. The 
4D-CBCT images in the first set were reconstructed from a well-sampled set of projections, 
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while the images in the second set were reconstructed from a severely under-sampled set 
of projections. The study showed that the tumor MAE along the SI direction has increased 
by 214% (from 1.28 mm to 4.02 mm) with a 95th percentile increasing by 250% (from 2.0 
mm to 7.00 mm) when using the 4D-CBCT images that were reconstructed from an under-
sampled set of projections as the input to this method. The normalized root mean square 
error (NRMSE) calculated using the voxel-wise intensity difference between the resulting 
estimated images and the ground truth images has also increased by 150% (from 0.10 mm 
to 0.25 mm) when using the 4D-CBCT images that were reconstructed from an under-
sampled set of projections. The under-sampling issue in 4D-CBCT has been studied ex-
tensively in the literature. Several solutions to improve the quality of the 4D-CBCT images 
have been suggested, such as compressed sensing [41–45], motion compensated recon-
struction [46–54], and interpolation of “in-between” projections to increase the number of 
projections in each respiratory phase bin [55–58]. Recently, deep learning approaches have 
been also proposed [59–61]. Motion modeling and fluoroscopic image estimation from 
enhanced 4D-CBCT images is worth investigating in future research. 

5. Conclusions 
This study investigated the feasibility of deriving motion models from patient 4D-

CBCT images and using them to generate fluoroscopic 3D images of the patient on the 
treatment delivery day while the patient is in the treatment position. The algorithm con-
sists of two steps. In the first step, PCA motion models were derived by performing PCA 
on the DVFs resulting from applying DIR on the input 4D-CBCT images. In the second 
step, an iterative optimization approach was applied on the motion model to generate a 
sequence of 3D images using CBCT projections. The estimated fluoroscopic 3D images 
were assessed by localizing the tumor in generated images and comparing these locations 
to the tumor ground truth location in the CBCT projections. The tumor MAE along the SI 
direction was 2.29 mm with 95th percentile of 5.79 mm for patient #1 and 1.89 mm with 
95th percentile of 4.82 mm for patient #2. The clinical applications of this work include 
image guidance, patient positioning, and delivered dose estimation and/or verification. 
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