Preprint
Article

A Combined Metrics Approach to Cloud Service Reliability using Artificial Intelligence

Altmetrics

Downloads

260

Views

194

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

25 November 2021

Posted:

29 November 2021

You are already at the latest version

Alerts
Abstract
Identifying and anticipating potential failures in the cloud is an effective method for increasing cloud reliability and proactive failure management. Many studies have been conducted to predict potential failure, but none have combined SMART (Self-Monitoring, Analysis, and Reporting Technology) hard drive metrics with other system metrics such as CPU utilisation. Therefore, we propose a combined metrics approach for failure prediction based on Artificial Intelligence to improve reliability. We tested over 100 cloud servers’ data and four AI algorithms: Random Forest, Gradient Boosting, Long-Short-Term Memory, and Gated Recurrent Unit. Our experimental result shows the benefits of combining metrics, outperforming state-of-the-art.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated