Preprint
Article

Antimicrobial Photodynamic Coatings Reduce the Microbial Burden on Environmental Surfaces in Public Transportation - a Field Study in Buses

Altmetrics

Downloads

146

Views

241

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 December 2021

Posted:

06 December 2021

You are already at the latest version

Alerts
Abstract
Millions of people use public transportation daily worldwide and frequently touch surfaces, thereby producing a reservoir of microorganisms on surfaces increasing the risk of transmission. Constant occupation makes sufficient cleaning difficult to achieve. Thus, an autonomous, perma-nent antimicrobial coating (AMC) could keep down the microbial burden on such surfaces. A photodynamic AMC was applied to frequently touched surfaces in buses. The microbial burden (colony forming units, cfu) was determined weekly and compared to equivalent surfaces in buses without AMC (references). The microbial burden ranged from 0 – 209 cfu/cm² on references and from 0 – 54 cfu/cm² on AMC. The means were 13.4 ± 29.6 cfu/cm² on references and 4.5 ± 8.4 cfu/cm² on AMC (p<0.001). The difference of microbial burden on AMC and references was al-most constant throughout the study. Considering a hygiene benchmark of 5 cfu/cm², the data yield an absolute risk reduction of 22.6 % and a relative risk reduction of 50.7 %. In conclusion, photo-dynamic AMC kept down the microbial burden, reducing the risk of transmission of microor-ganisms. AMC permanently and autonomously contributes to hygienic conditions on surfaces in public transportation. Photodynamic AMC therefore are suitable for reducing the microbial load and closing hygiene gaps in public transportation.
Keywords: 
Subject: Chemistry and Materials Science  -   Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated