A road network represents road objects in a given geographic area and their interconnections, and is an essential component of intelligent transportation systems (ITS) enabling emerging new applications such as dynamic route guidance, driving assistance systems, and autonomous driving. As the digitization of geospatial information becomes prevalent, a number of road networks with a wide variety of characteristics coexist. In this paper, we present an area partitioning approach to the conflation of two road networks with a large difference in level of details. Our approach first partitions the geographic area by the Network Voronoi Area Diagram (NVAD) of low-detailed road network. Next, a subgraph of high-detailed road network corresponding to a complex intersection is extracted and then aggregated into a supernode so that a high matching precision can be achieved via 1:1 node matching. To improve the matching recall, we also present a few schemes that address the problem of missing corresponding object and representation dissimilarity between these road networks. Numerical results at Yeouido, Korea's autonomous vehicle testing site, show that our area partitioning approach can significantly improve the performance of road network matching.
Keywords:
Subject: Computer Science and Mathematics - Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.