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Abstract: There is an increased interest in the district-scale energy transition within interdisciplinary
research community. Agent-based modelling presents a suitable approach to address variety of
questions related to policies, technologies, processes, and the different stakeholder roles that can foster
such transition. This state-of-the-art review focuses on the application of agent-based modelling for
exploring policy interventions that facilitate the decarbonisation (i.e., energy transition) of districts
and neighbourhoods while considering stakeholders’ social characteristics and interactions. We
systematically select and analyse peer-reviewed literature and discuss the key modelling aspects, such
as model purpose, agents and decision-making logic, spatial and temporal aspects, and empirical
grounding. The analysis reveals that the most established agent-based models’ focus on innovation
diffusion (e.g., adoption of solar panels) and dissemination of energy-saving behaviour among
a group of buildings in urban areas. We see a considerable gap in exploring the decisions and
interactions of agents other than residential households, such as commercial and even industrial
energy consumers (and prosumers). Moreover, measures such as building retrofits and conversion to
district energy systems involve many stakeholders and complex interactions between them that up
to now have hardly been represented in the agent-based modelling environment.

Keywords: agent-based modelling; agent-based simulation; urban energy system; district energy
system; systematic literature review; net-zero energy district; positive energy district

1. Introduction

Deep decarbonisation of the building sector in the EU is one of the key prerequi-
sites for becoming climate neutral by 2050, as buildings account for around 40% of final
energy consumption [1]. In this regard, “zero energy” building concepts, which largely
rely on reduced energy demand and on-site renewable generation, have recently gained
considerable interest in both scientific literature [2–7] and in practice [8]. However, some
researchers argue that dense and compact buildings on small plots have a small potential
for an on-site renewable generation [2,9] and can hardly achieve zero energy balance. Thus,
the expansion of building-level “zero energy” concept to the scale of neighbourhoods,
districts and communities is a potential alternative solution. With this motivation, several
concepts that aim to acheve zero or positive energy balance, such as Net-Zero Energy
Neighbourhoods (or Districts) [2,4,10], Plus-Energy Quarters [11,12], and Positive Energy
Districts [13–15] are being implemented currently.

Increased interest in such neighbourhood or district-level concepts as a solution for
energy and climate issues, raise a multitude of new questions, the most generic of them
being: “what socio-techno-economic conditions support the transition of urban districts
towards zero and positive energy districts?”. More concretely, what policies, technologies
and processes can foster this transition? In this context, it is becoming even more critical to
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understand the perspectives and roles of various stakeholders, including households, firms
and public institutions, as their participation (e.g. via energy conservation, prosumption
and energy trading, infrastructure development) in transitioning to a decarbonised society
can be supported by well-designed and inclusive policies and programs [16,17].

Within a broad selection of models used in energy system analysis [18], Agent-based
Modelling (ABM) approach is distinguished by its ability to represent individual decision-
making of heterogeneous actors, as well as interactions between them [19,20]. Moreover, it
is a simulation-type model that allows defining micro-level action and interaction rules,
leading to macro-level emergent insights [21]. Hence, it is deemed suitable for exploring
policy-related “what-if” questions and incorporating actors’ perspectives in the energy
system [16,17,22].

This article aims to obtain an overview of how ABM has been used to model policy
interventions that facilitate the decarbonisation (i.e. energy transition) of building-related
urban district energy systems and consider stakeholders’ social characteristics and interac-
tions. We use systematic literature review (SLR) to select the studies and discuss critically
the important aspects of ABMs, such as modelling choices and agent characterisation.
Hence, this SLR serves as a starting point for those who want to understand how ABM can
simulate urban district-level energy transition and contributes with:

• A detailed insight on how ABM has been used in modelling urban district’s (building-
related) energy systems while considering stakeholders and policies;

• A discussion of modelling choices and methodologies;
• Identification of research gaps and potential application streams.

This paper is structured as follows. Section 2 provides the context to this research
topic by defining urban district energy systems and summarising the previous research on
applying ABM to model energy systems. It is followed by the description of our approach
for the systematic selection and review of the articles in Section 3. The main results of the
review are presented in Section 4 and organised in different thematic subsections related
to essential aspects of ABMs of urban district energy systems, namely: model purpose
and outputs, agents, their decision-making and interaction rules, technologies and policies
covered, spatial and temporal aspects, as well as experimental setup of simulations, use of
empirical data, and implementation platform used. The paper is finalised with synthesised
observations and future research suggestions in Section 5.

2. Background and Definitions

In this section, we lay down the foundations for the topic of our focus. Namely, we
want to refer to the existing literature and define the urban district energy system. Secondly,
we discuss the state-of-the-art of ABM’s application in the energy systems research.

2.1. Urban district energy systems and models

The energy system is defined by the IPCC [23] as: “all components related to the
production, conversion, delivery, and use of energy.” The energy system is also seen as
a socio-technical system, comprised of more than just technical components, but also
markets, institutions, consumer behaviours and other factors that affect the construction
and operation of technical infrastructures [24].

The differentiation of energy systems into “urban” and “district” is generally about
defining the system’s scope. In Europe, “urban areas” refer to cities (i.e. densely populated
areas), towns and suburbs (i.e. intermediate density areas), as opposed to rural (i.e. sparsely
populated) areas [25]. According to the motivation and purpose of this work, we look at
the studies that address the energy system challenges of densely populated urban areas.

Depending on various national contexts, “districts” and "neighbourhoods" can denote
different administrative and non-administrative areas of cities or countries. Like [6,7,26],
we do not refer to certain juridical or administrative areas, but as part of an urban area.
Hence, everything from a small to a large group of buildings is considered a "district"
within this work. Due to the inconsistent use of the similar terms in the literature, the
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Figure 1. Representative application field of Multi-Agent Systems (adapted from [44]

synonyms of "district" such as "neighbourhood", "quarter", "block" and "community" are
included in the analysis.

It is important to note though, that the search for “district energy systems” brings to
district-scale energy systems, be that traditional district-level thermal and hybrid energy
systems (e.g. cogeneration) [27–30] or distributed energy systems such as PV, solar thermal,
battery storage [31–34]. However, consistent with the above-mentioned definitions of
[23,24], we keep the scope of "district energy system" broader and do not limit it to the
technical components only.

There are various energy system modelling approaches and tools that can be or are
used at the district-scale for different purposes [24,31,34]. As [31] conclude about the
numerous urban district-level energy models and tools: “some tools aim to provide a single
simulation that addresses many issues, while others give detailed results regarding specific
parts of the system”. Although the advantages of ABM in studying complex systems
and enabling the analysis of policies are acknowledged [17,24,35–37], its role in studying
district energy systems, to the authors’ knowledge, has not yet been explored in detail.

2.2. Agent-based modelling in energy systems research

ABM is a modelling approach that can be seen as one of the applications of a software
engineering paradigm named “Multi-agent systems” (MAS) [38]. (Some application fields
of MAS are represented in Figure 1). There is an ambiguity between MAS and ABM. How-
ever, the general understanding is that MAS is an overarching architecture or paradigm,
which, when applied for simulating various phenomena by abstracting real-life systems
(e.g. human, animals, organisations) is usually called ABM or Agent-Based Simulation
(ABS). Whereas MAS-based engineering deals with applying the MAS architecture to create
a software or control system, ABM applies MAS paradigm to draw implications about
other systems (e.g. human settlements, stock markets, etc.). The common point between
MAS-based engineering and ABM is in the desire to understand a complex system by as-
suming a distributed or autonomous behaviour instead of centralised or equation-governed
behaviour of system elements (e.g. like in System Dynamics approach). Hence, the terms
“multi-agent-system”, “multi-agent-based-modelling” and “agent-based modelling” are
sometimes used interchangeably in the literature [39–42]. However, the difference of these
two approaches, namely that ABM sets up agents with characteristics of real-world analogy
to see what happens when they act, while in a multi-agent system, agents are defined with
certain characteristics, connections and choices, such that they achieve specified emergent
states [43].
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ABM can, thus, be more specifically understood as a computer simulation of an artifi-
cial world populated by agents – discrete decision-making entities (individual, household,
firm, etc.) – whose behaviours and rules of different complexity can govern interactions.
One of the main reasons for choosing ABM over traditional equation-based modelling
approaches in energy systems analysis (i.e. system dynamics, optimisation models, com-
putable general equilibrium models) is its ability to incorporate heterogeneity and adap-
tivity of energy consumers [45]. In the energy system research, this strength has been
exploited for: (a) analysing the demand side of energy system [17], e.g. incorporating occu-
pant behaviour in buildings [46,47]; (b) better-informing policy-making and infrastructure
planning [22,36], e.g. determining target groups for interventions [48,49] or recommenda-
tions specific to the adoption of particular renewable energy or energy-efficient technologies
[3,50,51].

As the number and publication date of review papers indicate (see Table A1 in Ap-
pendix B), the first applications of ABM in energy research were for representing wholesale
electricity markets to analyse market structures [45]. The possibility of using ABM for
questions related to smart electricity grids and markets, such as the integration of demand
response and distributed generation in local or centralised markets, is explored by [44].
The potential of ABM to improve our understanding of consumer energy demand, by
allowing to account for social, behavioural, economic, technological, and market and policy
factors that influence energy demand is presented by [17]. Questions that interest energy
economists and policymakers are how consumers adopt energy-efficient technology and
how to encourage them. The benefit that ABM can bring to this stream of research, as well
as barriers and incentives for the adoption of energy-efficient measures in the residential
sector are addressed by [22,36]. Though our review topic overlaps with theirs, we do not
focus on the ABMs of “innovation diffusion” only and explore a wider range of approaches.

3. Methods

This work is based on the literature review type originating in biomedical and health-
care research and becoming prominent in energy system research too [35,36] – systematic
literature review (SLR).

The current SLR is carried out on the 13th of September, 2021 in the Scopus database
only. The main research question thereby is: “how ABM has been applied in studying the
urban district (building-related) energy systems?”. Accordingly, the search string provided
in the PRISMA Flow diagram in Figure 2 reflects this question. First, the literature suggests
many variations of agent-based concepts – simulations, models, approaches, as well as
“multi-agent” and “multi-agent-based” simulations, models, and approaches. Although
there are differences between MAS and ABM (see Section 2.2), they are sometimes used
interchangeably in the literature. Therefore, the studies referring to “multi-agent-based”
simulations were not excluded automatically but carefully checked. Second, the search
term “energy OR heat*” ensures that all studies mentioning energy or heat are captured.
Urban district energy systems are defined here as a group of buildings, heating and cooling
infrastructure, distributed energy resources (PV, battery, solar thermal, heat pump, CHP),
electricity distribution network, and energy producers, consumers, prosumers and other
relevant stakeholders in a given district or city. Hence, we exclude, for example, transport-
related studies, which returned 92 additional records in Scopus. Third, as explained
in Section 2.1, "district" is used interchangeably with "neighbourhood, quarter, block,
community. Moreover, sometimes city or town-level models are applicable to a smaller
scale too. Hence, we considered the article with at least one of the terms.

After a rigorous identification in the Scopus database and removing duplicated records,
further screening was performed using Scopus automatic filtering, reading titles and
abstracts. Journal and conference articles, written in English, accessible either openly or the
research institution’s library, and relevant to the energy research were filtered out. Finally,
full-text analysis has been applied to ensure the selected studies match the aim of this

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2021                   doi:10.20944/preprints202112.0121.v1

https://doi.org/10.20944/preprints202112.0121.v1


Energies 2021, 1, 0 5 of 27

Figure 2. PRISMA Flow Diagram of study selection for reviewing ABM of urban district energy systems.

review. The exact reasons for exclusion together with the full SLR process are presented in
Figure 2.

After the papers have been selected, they are qualitatively analysed based on the1

following key aspects of ABMs:2

1. model purpose and outputs (Section 4.1)3

2. agents (Section 4.2)4

3. agent decision rules (Section 4.3)5

4. agent interaction (Section 4.4)6

5. technologies and policies modelled (Section 4.5)7

6. spatial and temporal aspects (Section 4.6)8

7. empirical grounding (Section4.7)9

As already mentioned in one of the previous review articles [37], ABMs differ strongly10

in how they are designed and implemented, so a quantitative comparison of models is11

impractical. Therefore, we focused on the qualitative description of modelling choices and12

methodological aspects within the selected ABMs. The defined thematic clusters of analysis13

were inspired by the review approaches of [20,36], as well as by the Overview, Design14

Concepts, and Details (ODD) protocol [52–54] - the attempt to formalise the documentation15

of the ABM’s modelling process and results. Whenever included or implemented, the ODD16

protocol improves the readability and ensures that the information needed to understand17

and further analyse the models is present.18

Within this work, we focus on the components of the energy system related to the19

built environment of a district (i.e. buildings, heating, cooling, electricity supply systems)20

and human individuals or groups. Thus, studies focusing on other sectors (i.e. transport,21

industry, or agriculture and forestry) and elements (e.g. energy markets, information22

systems, power network) of the energy system, though recognised as part of the energy23

system, are outside the scope of this review.24

4. Results: ABMs of urban district energy systems25

This section presents the findings from the thorough analysis of 25 studies based on26

model purposes and outputs, agents, their decision-making frameworks and interactions,27

technologies and policies covered, spatial and temporal aspects, and empirical grounding.28
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4.1. Model purposes and outputs29

The review by [17] highlights that ABM is well-suited to answer two kinds of energy-30

demand questions: those related to policy design and evaluation and those related to31

system design and infrastructure planning. The review process reflects the existence of32

these two motivations for modelling, of which we only focus on those that are relevant for33

policy design. These studies evaluate the agents’ behavioural response to external stimuli34

in the form of a policy, regulation, observation or feedback, and peer influence. Rai &35

Robinson [51] present a well-validated example of an ABM used to test the influence of the36

regulatory framework on adopting renewable technology. They examine how additional37

rebates (i.e. partial refund of an item’s cost) for low-income households and changes in the38

amount of rebate, affect the adoption of rooftop PV in Austin, Texas.39

A model’s purpose or objective must be “clear, concise and specific” [52], which is40

essential for others to understand why some aspects of reality are included in a model41

while others are omitted. It is because each a model should be a “purposeful” abstraction42

of reality [55]. The purposes of the 25 selected models are diverse. However, we identified43

two main thematic clusters: diffusion and exploratory ABMs (see Figure 3).44

Figure 3. Two major thematic clusters based on model purposes within the ABM of urban district
energy systems

One large thematic cluster is the exploration of technology adoption that has its45

foundations in innovation diffusion theories [56]. This type of ABM is often named “agent-46

based diffusion model” [22,36,56,57]. They aim to analyse adoptions of energy-efficient or47

renewable energy technology by households, firms and other entities, often due to certain48

policy interventions [3,51,58–64]. Usually, such models’ outputs are the number of adopters49

or adopted units, energy or emissions saved over time (see Table 1). This approach allows50

us to observe what factors affect the adoptions of technologies in which ways. The term51

“diffusion” encompasses concepts like social learning and dissemination [65]. Thus, this52

approach is also well-suited to represent the dissemination of energy-related practices and53

behaviours, such as energy-saving [47,49], energy-efficient ventilation behaviour [66,67],54

user learning (i.e. energy saving) after authoritative smart meter adoption [68], building55

renovation behaviour[69], weatherisation (i.e. making apartments weather-proof) [70],56

buying energy-efficient appliances and switching an energy provider [71]. Similar to57

technology adoption, these studies investigate how energy-related behaviours are adopted58

and how much energy can be saved. Three models [66–68] focus on both technology59

adoption and the resulting behaviour dissemination.60

The remaining works have more exploratory purposes and are less established than61

diffusion ABMs. Fouladvand et al [72] investigate how Thermal Energy Communities62

(TEC) can be formed and sustained, where agents can either join a new or existing com-63

munity or decide to drop-out based on financial, technological and energy plan (e.g.64

self-consumption) evaluations. Busch et al’s [73] model is distinguished from other models65

by representing the continuous process of engagement and district-heating development66
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Table 1. Model purposes and model outputs of the selected studies - Diffusion ABMs

Study Model purpose Model output

[47] Explore the effect of social-network char-
acteristics on the diffusion process of en-
ergy conservation

% energy savings from different feed-
back methods with various social net-
work characteristics

[50] Examine the impact of information dif-
fusion algorithm on residential PV adop-
tion in city neighbourhoods

Number of new and total adopters over
time

[58] Test alternative policy scenarios for PV
adoption in a neighbourhood

Number of PV adoptions per year (sim-
ulated vs real data), spatial visualisation
of total adoptions

[67] Design and test marketing strategies for
feedback devices (CO2-meter) to iden-
tify which would be most effective

Technology and shock ventilation be-
haviour adoption for different lifestyles

[66] Identify the effect of the ‘CO2 meter’
(feedback device) on energy-efficient
heating behaviour

Adoption numbers with various mar-
keting strategies (awareness, give-away
device, training) and their locations

[59] Analyse diffusion patterns of rooftop PV
under the influence of five factors on the
adoption

Number of adopters over time; spatial
representation of adoption

[60] Explore individual and community so-
lar PV adoption under the Energy Act
in Switzerland

Installed capacity of individual and com-
munity PV systems over time

[3] Test consumer adoption behaviours
over time in the presence of different
renewable energy options

Number of adopters by renewable op-
tions, restricted households, % of neigh-
bourhood RE

[61] Predict the consumer adoption of differ-
ent renewable energy models and to de-
termine the resulting impacts on energy
system performance

Utility and solar installer revenues, total
power added to the grid, total number
of adopters, number of rooftop PV and
community solar adopters over time

[62] Determine the effect of PV diffusion on
the profitability of utilities

% of buildings with installed PV, %
of new installations per year, % of de-
mand met by PV, spatial representation
of building adoption.

[71] Observe the impact of socioeconomic
heterogeneity, social dynamics, and
carbon pricing on individual energy-
related decisions

CO2-emissions over time; avoided CO2-
emissions by each type of behaviour (in-
vestment, conservation, switching sup-
plier)

[51] Test the effect of solar rebates on PV
adoption

Cumulative number of PV systems over
time; thematic maps with spatial dis-
tribution and density of PV systems
adopted

[63] Determine the diffusion rate of the green
technologies under uncertainties caused
by climate change, characteristics of
adopters, and their interactions

Number of installed technologies over
time, under six different policies

[64] Assess the impact of switching from the
self-consumer paradigm to a jointly act-
ing renewable community on adoption
rate of rooftop PV in a city district

kW installed over time, number of new
adopters per year, spatial distribution,
typical daily production-consumption
profile

[68] Study user learning in authoritative
technology adoption based on the case
of smart meter deployment in Leeds

Average daily electricity load curve
(kW), number of experienced users,
agents’ attitude and energy-saving
awareness over time
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instead of instantaneous decisions (e.g. to adopt, to invest). In these studies, the output67

metrics are very specific to the purpose and subject studies (see Table 2).68

4.2. Agents69

Agent is a key element in this modelling approach. Many previous studies highlight70

that there is no common definition of an agent [44,78], as its properties depend on the71

model’s purpose and application area. Nevertheless, many authors refer to the following72

basic definition presented by [79]: “Agent is an encapsulated computer system that is73

situated in some environment, and that is capable of flexible, autonomous action in that74

environment in order to meet its design objectives”. In the ODD protocol, agents are one75

of the model’s “entities”, along with spatial units and the overall environment [54]. It is76

due to the parallels between the agent-based modelling approach and Object-Oriented77

Programming (OOP) (i.e. the ‘classes’ or its instances in OOP could be equivalent to78

‘entities’ in ABM). It might lead to confusion among readers who are new to Agent-based79

modelling or use different implementation tools. In the current article, we differentiate80

between agents and other entities, where we refer to “agents” as autonomous entities that81

can make decisions (i.e. implement certain algorithms) and interact (i.e. obtain information82

from its environment or other agents) in order to reach its objectives.83

Most of the agents in the selected studies are “households” (15 out of 25) and three84

studies also denote them as “energy consumers” [3,68,71] (see Table 2). Since most of these85

studies model the adoption of PV or other technologies, “households” are most common86

decision-makers in this regard. Majority of these models limit their agent population to the87

households that live in a single-family building, because installation of renewable energy88

in other types of housing (rented apartments, multi-family housing) is subject to additional89

legal or physical constraints. However, few models are exceptions: [3,61] differentiate90

agents into tenants and house owners, where only house owners can buy and install PV91

and tenants can choose from green electricity or community solar program; [76] attempts92

to represent group decision-making regarding heating system, insulation or RE system93

installation in multi-family houses. In other models, building (or building block) owner94

[60,69] and building agents [59] can make building-level decisions, i.e., adopting PV or95

renovation. The rationale of these models is that there is only one building owner that can96

make such a decision.97

While the above-mentioned studies focus predominantly on one type of stakeholder,98

there are few models that involve different types of stakeholders as agents [73]. For99

example, in [73], instigator agents (i.e. local authorities, commercial, and community-based100

developers) are driving the development of projects, whereas “projects” are management101

agents responsible for carrying out actions on behalf of their parent instigators [73]. In102

models with multiple types of stakeholders, it is becoming more challenging to draw a103

line between agents and other entities, e.g. as in [47], as all of them are essentially realised104

as classes. However, one can observe the tendency to call human-like entities “agents”,105

e.g. instigator agents, and passive entities like grid cells and projects [73] as just “entities”.106

Figure 4 summarises the types of agents we identified in the reviewed models.107

The essential part of ABMs is decision rules that govern the actions of agents. Decision108

rules are realised with the help of attributes that describe agents [43]. Moreover, interaction109

and social influence play a significant role in agent’s decision making. Hence, the following110

subsections give an overview of the decision-making rules and agent interaction strategies111

implemented in the reviewed models.112

4.3. Agent decision rules113

Decision-making rules (also called behavioural rules, decision rules or models, or114

just “rules”) are methods by which agents’ dynamic states can change their value and115

translate into agent action [43]. Behaviour is the overall sum of agent actions and state116

changes [43]. However, authors often use the terms “actions”, “behaviours” and “decisions”117

interchangeably [80]. The ODD protocol suggests to include a detailed description of118
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Table 2. Model purposes and model outputs of the selected studies - Exploratory ABMs

Study Model purpose Model output

[73] Explore the development of heat net-
work business models by focusing on
the decisions and actions of local actors
in developing projects

Number of realised project by various
instigators (i.e. municipal, commercial
and community) over time

[72] Provide insights into factors influencing
the formation and continuation of TEC
initiatives

% of joined households (at initiation), %
of households who joined afterwards,
satisfaction of the households who
joined the community

[74] Explore policy scenarios and campaigns
aimed at reducing domestic energy de-
mand (i.e. economic scenarios affecting
energy prices and household income)

Total energy demand (in 2049), factors
that affect the demand (income & fuel
price growth, external influences)

[70] Explore the impacts of social inter-
actions on weatherization decisions
for households under pre- and post-
weatherisation conditions

Number of weatherized households
(with and without Assistance Program,
with and without community leader, for
different memory lengths of agents, and
network characteristics)

[75] Explore socioeconomic conditions that
could support the neighborhoods’ heat
transition over time while meeting the
neighbourhood’s heat demand

Number of heating systems adopted at
certain combination of time horizon for
all, changes in natural gas price and
electricity price, fraction of households
that is able to compare combined invest-
ments

[76] Explore how group decision-making in
strata buildings could affect the heat
transition in the owner-occupied share
of the housing sector in the Netherlands

Individual preferences for thermal sys-
tems at the beginning of the simulation,
group lock out (when the Homeowner
Association can’t agree on the decision),
cumulative heating costs over time

[69] Explore the development of the renova-
tion state of the building stock based on
renovation behaviour of different types
of homeowners

Development of overall heat demand
(GWh/a) and number of buildings reno-
vated in the city over time

[77] Analyse the effect of behavioural out-
comes in different policy situation due
to the influence of energy-saving be-
haviour and intentions

Descriptive statistical mean values of
different situational factors

[48] Find the near-optimum targets among a
social network of households in order to
participate in a typical Energy Efficiency
Program (EEP)

Energy Index that changes due to the
EEP or the social interactions

[49] Investigate participants’ related factors
that can affect short-term and long- term
effects of these programs

Short-term (right after the eco-feedback
program) and long-term (after interac-
tions with other agents) efficiencies of
the program
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Figure 4. Agents in the reviewed models

individual decision-making [81]. The information such as identifying subjects and objects,119

the method, the uncertainty, and other aspects must be part of this documentation [81].120

However, in practice, such protocols are rarely adhered to by the authors.121

The articles describing the diffusion ABMs are more explicit about the decision-making122

algorithms. In such models, agents decide to adopt or not adopt (i.e. to invest or not invest123

in a certain technology or to perform a certain energy-related action) based on specific rules124

or algorithms. Decision rules range from simple ad-hoc rules to most elaborate models,125

such as psychosocial or cognitive models [43]. The classification of existing decision models126

has been previously done by [80] (for human agents in ecological ABMs), [56] and [57] (for127

agents in ABMs innovation diffusion) and [43] (for ABMs of socio-technical systems). The128

ODD+D by [81] clusters agent decision algorithms based on the nature of the underlying129

assumptions:130

• theory-based (e.g. microeconomic and psychosocial models)131

• empirical-based (e.g. statistical regression models, heuristic rules),132

• ad-hoc rules (i.e. dummy rules and pure assumptions that are not based on theories133

or observations),134

• combinations of the above methods (see Figure 5.135

Figure 5. Types of decision-making frameworks

Most of the diffusion ABMs cited in this article apply theory-based decision models,136

namely, psychosocial (also called "socio-psychological" or "cognitive") and microeconomic137

models. Psychosocial models are based on social psychology theories that assume that138
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human decisions are based on psychological rules, rather than on rational economic139

rules. The most frequently used psychosocial theory in the selected models is the Theory140

of Planned Behaviour (TPB) by [82]. It states that human behaviour results from the141

intention to perform the behaviour; individual attitudes, subjective norms, and perceived142

expectations can influence the agent to perform such behaviour [83]. Usually, the more143

favourable these three aspects of human psychology are, the stronger is the person’s144

intention to perform a certain behaviour [83]. The standard form of TPB is static, i.e. it145

describes how these three components are translated into intention and action at a given146

time. The models by [51,66,67] are examples of implementing this theoretical model. Other147

psychosocial models including “consumat” model by [84] in [68], Norm Activation theory148

by [85] in [71], the goal-framing theory by [86] in [74], and Influence, Susceptibility, and149

Conformity Model by [87] in [49], are also used. Several models rely on models from150

microeconomic or network theories, namely on innovation diffusion models. Azar & Al151

Ansari [47] draw on the opinion dynamics models by [88–90] to represent the effect of152

energy feedback interventions among building residents.153

Another class of frequently used agent decision-making model is the empirical-based154

heuristic models. They are described as models “not built on any grounded theories” and155

“having the impression of being ad-hoc” [57]. Agents are often assigned rules derived from156

empirical data, and also model parameters are selected such that results match simulated157

output against a real-life observation [57,80]. They might not represent the process of158

agent decision-making very accurately or realistically, but have the advantage of being159

easy to implement and to interpret [57]. Heuristic decision rules can be implemented160

in various ways. Several modellers favour data-driven approaches, thus, implementing161

machine learning algorithms, such as logistic regression models [59] and artificial neural162

networks [77]. In this approach, several sets of factors that can affect the adoption of PV163

or energy-saving behaviour, given that data about those factors are available, are tested.164

The more qualitative approach is followed by [72] and [73], who created the decision rules165

relying on the stakeholder’s expertise.166

Some models rely on ad-hoc rules without any validated theory or empirical ground-167

ing. Huang et al [70] derives the agents’ decision logic from relevant secondary literature168

and assumes that social influence plays a great role in deciding to adopt weatherisation of169

a dwelling. In this model, agents decide between adopting weatherisation with the Weath-170

erization Assistance Program or without and it depends on several attributes, memory171

length about the energy costs, current satisfaction level and information level about the172

assistance program. Mittal et al [3] developed a decision model similar to [51], but do not173

apply the TPB. The agents assess the affordability of PV options (i.e. buy, loan, community174

PV) and the attitudinal factors in the corresponding submodels and make the adoption175

decision based on certain if-else type rules. The remaining studies are summarised in Table176

3.177

4.4. Agent interaction178

Emergent phenomena to be observed via ABM is the result of not only individual179

decision-making but also agent interactions [21,78]. The behaviour of agents is often180

influenced by the information fed from its environment, including other agents. In the181

ODD the authors differentiate conceptually between ’sensing’ and ’interaction’: the first182

concept defines what state variables of which other individuals and entities can an agent183

perceive; the latter is the direct (via communication) or indirect (e.g. via a common resource)184

interaction between agents or between agents and other entities. However, in practice it is185

challenging to differentiate between those. For example, human agents’ social influence186

(also known as ’peer effect’ or ’neighbourhood effect’) can be represented using either (or187

even both) of those concepts, as it seen from the pool of the reviewed papers. Hence, in188

this work, we consider ’sensing’ as one of the ways of representing interaction (as depicted189

in Figure 6).190
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Figure 6. Ways of implementing ’interactions’ and relevant modelling choices

In the selected studies, one must, first of all, differentiate between studies where191

agents can interact and influence each other and those where agents do not interact. Only192

two studies have not considered agent interactions in any way [62,69]. In [73] and [77],193

interactions are considered as important, however, treated in an abstract and implicit way.194

Table 3 shows how interactions are represented in each reviewed study.195

The majority of studies which include agent interaction agents are often placed in a196

network structure, often called “social network”, that imitates the relationship between197

agents, through which they can exert an influence upon each other based on certain rules198

(i.e. “peer influence” or “social influence”). The resulting structure allows modelling the199

social interactions of agents, resulting in the spread of desirable, or non-desirable, ideas,200

products, or behaviours [91,92] (also called “opinion dynamics”). One common way of201

doing so is through making an agent’s decision dependent on other agents’ (either selected202

group of agents or all agents) choice or decisions.203

A social network typically consists of two components: individuals or agents (rep-204

resented by nodes) and social connections (represented by edges or links). It can also205

have various topologies, e.g. small-world network, and created by various algorithms,206

e.g. Watts-Strogatz algorithm. Some modellers test the effect of varying the topology and207

other characteristics (e.g. number of links per node) of social networks [47–49]. A modeller208

should also specify between which agents interaction (or ’sensing’) occurs, between all209

agents or certain group of agents or between agents and other entities (e.g. grid cells). In a210

social network, usually, agents that have a link can interact or the influence of connected211

agents is more significant compared to those with whom the agent doesn’t have one. This212

assumption is based on the empirical findings: friends and family have a larger impact213

on each other’s behaviour than strangers [66,67]. In some cases, agents interact based on214

similarity (also called ’homophily’) [3] or geographical proximity [51] (’neighbour effect’).215

Another choice that a modeller should take is regarding the frequency of interactions.216

Huang et al [70], for example, let agents that are linked with each other interact every time217

step, whereas "strangers" (without direct links) interact with a probability of 0.10. The218

"strength" of the influence can also be characterised in various ways. The most used is219

the opinion dynamics model by relative agreement algorithm, where agents with similar220

opinions have a stronger influence on each other than those whose opinions are more221

polarised [93]. To sum up, there are usually four key things a modeller should consider222

when characterising an interaction of agents, as we summarise in Figure 6.223

4.5. Technologies and policies modelled224

This subsection discusses the technologies and policies that are in the scope of the225

reviewed ABMs. Similar to [36], we identify which technologies and policies are explored226
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Table 3. Agents, decision frameworks and representation of agent interaction

Study Agents Decision framework Interaction

[47] occupants and
buildings

Theory-based: several
opinion dynamics
models

Opinion dynamic models (information ex-
change within own social networks with fol-
lowing topologies: small world, scale free,
and random)

[50] households Theory-based:linear
threshold theory

Opinion dynamics; Barabási Albert model
(scale free network)

[58] households Psychosocial: TPB Opinion dynamics; Watts-Strogatz small-
world network

[67] households Psychosocial: TPB
Social influence changes the Subjective
Norms (TPB); Watts-Strogatz small-world
network

[66] households Psychosocial: TPB
Social influence changes the Subjective
norms (TPB); Watts-Strogatz small-world
network

[59] buildings Empirical-based: Logis-
tic regression

’Sensing’ in a geographic proximity (i.e. for
every additional neighboring adopter in
<100m, buildings would be more likely to
adopt PV)

[60] building block
owners Psychosocial: TPB Social influence changes the Subjective

norms (TPB)

[3] households Ad-hoc rules

’Visual interactions’ (i.e. sensing) and infor-
mation exchange based on similarity within
own social networks (Watts-Strogatz small-
world network)

[61] households Ad-hoc rules Interaction within and outside of fixed so-
cial networks with a probability

[62] building own-
ers/ buildings Ad-hoc rules None

[71] energy con-
sumers

Psychosocial: Norm
Activation Theory

Simple opinion dynamics model in a fixed
social network

[51] households Psychosocial: TPB
Opinion dynamics via Relative Agreement
(RA) algorithm; Small World network; inter-
action based on geographic proximity

[63] households Psychosocial: TPB
Opinion dynamics via RA algorithm; Small
World network; interation in local (based on
the physical distance) and global networks

[64] households Psychosocial: TPB Opinion dynamics via RA; Small World net-
work; interaction based on similarity

[68] energy con-
sumers

Psychosocial: Con-
sumat Opinion dynamics; Small world network

[73]
instigators,
projects and
grid cells

Empirical-based: stake-
holder expertise Abstract interpretation of ‘interaction’
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Table 3. Continued

Study Agents Decision framework Interaction

[72] households Empirical-based: stake-
holder expertise

Opinion dynamics in a small-world social
network

[74] households Psychosocial: Goal-
framing theory

Interaction based on similarity in a social
network (no further details).

[70] households Ad-hoc rules Barabási Albert model (scale free network)

[75] households Ad-hoc rules ‘Sensing’ of group-decisions in the neigh-
bourhood

[76] households Ad-hoc rules ‘Sensing’ of group-decisions in the neigh-
bourhood

[69] building own-
ers Ad-hoc rules None

[77]

urban resi-
dents, policy-
makers,
management
agents

Empirical-based: artifi-
cial neural networks Abstract interpretation of ‘interaction’

[48] households

Theory-based: Influ-
ence, Susceptibility,
and Conformity
Model

Opinion dynamics, social network: Ran-
dom, Small-world, Scale-free

[49] households

Theory-based: Influ-
ence, Susceptibility,
and Conformity
Model

Opinion dynamics, social network: Ran-
dom, Small-world, Scale-free

using ABM. However, since the selected studies are not narrowed down to studies of227

technology diffusion only, it gives a broader overview of the discussion subject.228

4.5.1. Technologies229

From the 25 reviewed models, technologies are relevant to 20, while the rest have230

not modelled technology explicitly. Within these 20 studies, PV system, and specifically,231

diffusion of PV is the most frequently explored topic, as there are ten studies which focus232

on that (see Table 4). Majority of these studies consider the diffusion of a single technology:233

rooftop PV [50,59,60,62,64], feedback device (CO2 meter) [66,67]. In some cases, there could234

be several options are available for agents: [3,61] let agents choose between buying PV via235

cash payment of a loan, adopting community solar (i.e. renewable energy community) or236

opting for green electricity; [63] make agents choose the optimal solution for their rooftops237

– either rooftop PV or green roof; [76] introduces the combinations of technologies as238

“technology state” of a household (i.e. combination of heating system, insulation level, and239

appliances). Building insulation or renovation is addressed in three studies [69,70,75]. Most240

studies are interested in the adoption of technologies by households: under what conditions241

are households willing to adopt these technologies, how does it affect their subsequent242

energy consumption, etc. Zhang et al [68] call the latter “learning” and observes how the243

installation and the subsequent interaction with this technology make them decrease their244

energy consumption.245

Finally, the five studies focus on the energy-related behaviour that is not directly linked246

to a single technology. For example, [47–49,77] investigate how feedback interventions247
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could be improved, so that building occupants consume even less energy. Although the248

consumption of energy practically occurs as a result of interaction with certain technology249

(e.g. heater, shower, computer), such details are ignored in these models in order to focus250

on the macro-level phenomena, such as the interaction of occupants in their network251

[47]. Similarly, [71] examined the effect of several actions (i.e. investment, conservation,252

switching) in different socio-political framework conditions without emphasising the253

technological aspects. For a more detailed description of the review articles regarding254

ABMs refer to Appendix A, Table A2.255

4.5.2. Policies256

The selected 25 works can be the first split into those that explicitly model policy257

interventions (11) and those that do not (14). The policies covered in the 11 models are of258

two major types: ones that promote investment for energy-efficient technology (PV, DH,259

feedback device, etc.) and those that encourage energy-saving behaviour. The examples260

of the first type of policies are those that stimulate PV system investments [51,60,63,64],261

assistance programs for weather-proofing [70], and promotional campaigns for feedback262

devices [67]. The examples of the interventions for stimulating energy-saving are energy263

feedback mechanisms [47]. Beyond these clusters, [71] introduces several carbon emission264

price scenarios to see how it affects the emissions caused by household energy consumption.265

Busch et al [73] explore various ways of encouraging different district heating (DH) system266

developers and found out that creating policy specific to the motivations and capabilities267

of different actors, enabling networking and learning, and supporting all stages of the268

decision process is crucial for developing DH network successfully.269

The prevailing share of the papers do no implement policies explicitly. They rather270

explore various socio-economic or other aspects that can affect the policy design or help271

policymakers make decisions or interpret the results of their model for policy-making [68].272

For example, [75] investigates the socioeconomic conditions, such as value orientation of273

the population, gas price changes, the time horizon for investment evaluation, that support274

the transition to the natural gas-free economy.275

The detailed description of how policies are implemented in the models are provided276

in Table A2 (Appendix B).277

4.6. Spatial and temporal aspects278

Identifying the spatial and temporal scale of the models is important in order to un-279

derstand the system modelled. Moreover, certain patterns and processes can be dependent280

on the scale [94] and, thus, they need to be clearly stated. By spatial scale, we mean “geo-281

graphic scale”, defined as a research area’s spatial extent in a study [94]. The geographic282

scale of the models considered range from “group of buildings” [47] to an entire city, such283

as Hamburg [69]. 16 studies describe community, or district, or neighbourhood-scale mod-284

els, while nine studies are in city-scale [51,67–69,73,77]. Although these articles present285

the models as having been applied to specific geographic scales (i.e. via case studies), it is286

difficult to say if they can be scaled up or down, as it might depend on many factors.287

The chosen scale in ABM usually determines the number of entities (i.e. agents)288

covered [33]. This can be limited by computers’ processing capacity, especially if decision289

algorithms are sophisticated, much data is used, or a considered city is very large, e.g.290

like in [59]. Therefore, the majority of selected models opt for district or neighbourhood291

scale. Those whose models are in city-scale focus on smaller cities of about 100-150,000292

[62,66,67]. Only one model has modelled a city of approx. 174,000 households and the293

simulation had to be carried out on a supercomputer [51]. There are also such models294

whose scale depend on the topic of research. For example, DH network development is295

usually city-scale phenomena [73], the development or properties of energy communities296

are explored on a neighbourhood or district level [3,72].297

Although traditionally ABMs have not focused on the geographic environment and298

spatial representation, more and more models are striving to represent space explicitly299
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and realistically (e.g. using GIS techniques) [95]. According to [95], models can have three300

levels of spatial explicitness: 1) implicit and non-geographic representation of space (e.g.301

social networks that are only partially tied to space); 2) explicitly represented but abstract302

in how it maps onto reality (e.g. Schelling’s segregation model); 3) explicit and realistic303

spatial representation. Among the reviewed models, only a few are spatially explicit and304

realistic. For instance, [51,58,59,64] join building information with actual geographical305

locations of those buildings and have a clearly defined boundaries of the study area. The306

rest of the models integrate spatial properties in different, semi-abstract ways. For example,307

in [3,61] agents in the same community, i.e. neighbours, are defined by a community ID,308

and each agent in a community becomes aware when somebody in that community installs309

a PV.310

The temporal scale is a duration of a process observed, i.e. time horizon between311

the start and end of a single simulation run. Temporal resolution represents the unit312

of a time step in a considered model. According to temporal scale and resolution, the313

reviewed studies have time horizons of several years and resolutions of 1 month or three314

month-periods. These models have large simulation horizons and resolutions because315

the behavioural dynamics captured in those models occur in lower temporal resolutions.316

For example, in real life, people’s attitudes do not change in a matter of hours. Such time317

horizons and resolutions are characteristic of policy-guiding models, aiming to observe318

the effect of a policy intervention over the years. In their models, [59] and [51] choose the319

years when adoption data are available, which makes it possible to improve their empirical320

model in such a way that the simulated outputs fit the real adoption data.321

4.7. Empirical grounding322

Empirical grounding of ABMs is becoming more important, especially for models that323

aim to reflect a specific real-world situation and provide decision support for policymakers324

and stakeholders [57,96]. As opposed to hypothetical or theoretical (or highly abstract)325

ABMs, empirical ABMs use real-life data to parameterise models, initialise simulations, and326

evaluate model validity [57]. Modellers try to improve the realism of agent decision-making327

algorithms by consulting with system-relevant actors [72,73] or relying on empirical data328

[59,64,66], e.g. geospatial information on buildings. It is becoming more feasible due329

to the contemporary trends we observe the availability of high-resolution data sets, the330

spread of open data culture in science, advances in data analytics, machine learning, and331

computational power. Therefore, we aim to assess for what purpose, what kind of, and332

how empirical data is used in the selected ABMs of district energy systems. By empirical333

data, we mean both qualitative and quantitative data based on observation or experiment.334

The review by [36] highlights that empirical data in ABMs are used for two general335

purposes: (1) to form the agent decision-making algorithm; (2) to determine the specific336

properties of technologies, policies, etc. that an agent can access to use in their decision337

rules. In the first case, empirical data from surveys, statistical data (i.e. census), interviews,338

and other sources are used to determine the attributes (both which attributes and their339

values) of the agents that are further incorporated in a decision-making framework (as340

described in Section 4.3). Jensen et al [66] describe how they utilised empirical data for341

creating household agents and their social network in the appendix of their article. Building342

data (i.e. floor area, spatial information, etc.) are connected to agents, and the commercial343

geo-marketing data defines the “lifestyle” of agents, which further define their affinity344

for technology and behaviour adoption. Social influence is modelled by introducing a345

social network based on interviews with households. The second purpose of integrating346

empirical data involves using statistical data and secondary literature to define other, for347

example, scenario-relevant information or model parameters (i.e. global parameters). For348

example, [47] use building energy consumption survey data to initialise the model-level349

parameter “building energy intensity” and the number of agents in each building. However,350

it is not easy to determine for all models for what the specific data is used, as authors351
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do not sufficiently describe it. Sometimes the authors refer to another article for detailed352

information about surveys or stakeholder interviews [73,74].353

In general, there are three processes in model building where the use of empirical data354

make models more reliable and realistic: parametrisation, calibration and validation [37].355

The parameterisation is the process of connecting model and target system (i.e. the real356

system being modelled) via assigning the set of parameters and their values to enable sim-357

ulation [96]. In line with observations of [37], only a few modellers explicitly differentiate358

their modelling process into these three phases. Moreover, if calibration and validation359

are somewhat known to data-driven modellers, the process of parameterisation is not360

recognised as much. Among the selected models, only [66,67] describe parameterisation in361

more detail: they select the parameter values to reflect the empirical patterns of ventilation362

behaviour adoption derived from survey data.363

Calibration is the adjustment of parameters to ensure that model output matches the364

relevant empirical data, e.g. in a specific location and application [37]. The difference365

to validation is that the parameters are tuned to match a specific context (i.e. location,366

time), which does not necessarily mean that the model will exhibit accurate results and be367

predictive upon application in another context. To achieve that it has to be first validated on368

a separate set of data independent of data used for calibration [57]. The following models369

describe how they calibrated their models: [62] calibrates the parameters of the logistic370

function governing the adoption of PV based on the secondary literature and publicly371

available data; [63] performs the partial calibration (i.e. only of the financial submodel)372

based on the values reported in the literature, experts’ opinions and publicly available373

datasets; [66] provides an indirect calibration with three empirical patterns, the same374

used for parameterisation in [67]. As for the remaining models, some do not differentiate375

between validation and calibration [60], some call calibration “model fitting” [51], but376

the majority do not mention calibration at all. Often authors mention the lack of data for377

calibration as their limitations [63,73].378

Validation aims to achieve the matching between the observations of the models and379

reality. It should not be confused with “verification”, which is the process of making sure380

the model implementation is carried out correctly with respect to the conceptual model381

[97]. As ABM is a highly multi-disciplinary and flexible framework, its validation is a382

highly debated topic. For more detail, we suggest referring to the works of [98] and [57]383

that explore this topic in more detail. Our observations are mostly limited to the validation384

processes provided in the selected works, the majority of which either do not mention385

validation, state it as a limitation and future task, or have insufficient information on the386

validation.387

Among the models which consider validation, there are two following generic ap-388

proaches. The first approach is an aggregate behaviour validation, mainly based on389

statistical data fitting. Rai & Robinson [51] and Lee Hong [59] applied this way of valida-390

tion, because they had empirical data on the number of adopters in a given location, over a391

certain period. Lee Hong [59] use the Wald test (i.e. Wald Chi-squared test) which tests392

the significance of a set of independent variables in a statistical model. Rai & Robinson393

[51] first calibrate the six model parameters by an iterative fitting via historical adoption394

data and then validate the model in terms of predictive accuracy, i.e. comparing predicted395

adoption with empirical adoption level for the period starting after the last date in the396

calibration dataset. Also, they carry out temporal, spatial, and demographic validation397

[51]. Another group of modellers [47,49,73] pay more attention to the validation of social398

processes and, by drawing on the work of [99], offer conceptual, operational or structural,399

and technical validation (by this, [47] refer to verification). Conceptual validation is the400

process of determining that the theories and assumptions underlying the conceptual model401

are correct [99] and usually achieved by basing the model on validated concepts [47,49] or402

the insights from stakeholder workshops [73].403
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5. Discussion and Conclusion404

This article reviews the state-of-the-art ABM approaches in the context of urban405

energy systems. By analysing a pool of 25 carefully selected research articles, we observe406

some key domains where ABMs are used to simulate agent decisions and stakeholder407

behaviours in urban energy systems to guide policy design. This section summarises the408

main observations of the review and highlights the avenues for further research.409

In the district energy systems domain, the use of ABM for policy implications is410

becoming more prominent. The ability of ABMs to model complex interactions of indepen-411

dent agents enables the modellers to observe the broader implications of a specific policy412

design. The model structure, agent types, decision models, spatial and temporal scales are413

determined by the goals and the questions the ABM seeks to answer. Policy design studies414

are very versatile when it comes to specific purposes: from evaluating particular measures415

that stimulate the adoption of technologies, over studying the effect of social connected-416

ness of households, to exploring novel concepts, such as the formation of thermal energy417

communities. It is important to reiterate that the origin of ABMs was in social and natural418

sciences. When ABMs become popular in other scientific fields, such as energy systems419

research, scientists try to adapt the original ABM concepts to fit their specific purposes.420

Such adaptations are often study-specific, and therefore, some essential modelling details421

may get lost or unclear to the audience without careful and standardised documentation.422

In this regard, the ODD protocol provides an essential standardised framework for model423

documentation.424

Our analysis shows tremendous potential in ABMs to help policymakers make better425

policy decisions. The main challenge for future ABM applications in district energy systems426

is whether the ABM concepts can evolve and scale-up to represent the complexity of agents’427

decisions and interactions in a smart and decentralised energy system. Most of the reviewed428

ABMs deal with the various questions around adopting energy-efficient or renewable429

energy technology. These adoption decisions represent single-step investment decisions430

dependant on one decision-maker. However, there is a vast field of opportunity when it431

comes to exploring phenomena that involve multi-level decision-making and interactions432

of various stakeholders. Building stock retrofitting and development of district heating433

system are examples of such phenomena. Though a few exploratory ABMs investigate434

these topics, there are no models that comprehensively study retrofitting decision-making.435

Furthermore, the studied literature mainly deals with the energy issues of residential436

neighbourhoods and not commercial or industrial entities. Therefore, we also find it an437

exciting research avenue to explore whether ABMs, with their unique abilities, can answer438

some of the challenging energy transition questions related to commercial and industrial439

stakeholders.440

Empirical data can be used to parameterise agent decision-making and provide con-441

textual information to the model. Based on our analysis, we find significant gaps in the442

use of empirical data. Only a handful of reviewed models have made an explicit effort443

to clearly describe the use of data for parameterisation, calibration, validation, and veri-444

fication purposes. Agent and model level parameter selection is often not given the due445

respect and attention it deserves. As the energy system complexity and, hence, the model446

complexity increase, careful parameterisation can significantly lower the computational447

cost. Lastly, careful integration of empirical data for model calibration, validation, and448

verification purposes significantly improves our confidence in the model and the results449

for practical purposes.450

Author Contributions: Conceptualization, A.A., L.K., F.S. and C.B.H.; methodology, formal analysis,451

investigation, resources, data curation writing—original draft preparation, A.A.; writing—review452

and editing, F.S, L.K., C.B.H.; visualization, A.A.; supervision, L.K., F.S.; project management, funding453

acquisition, L.K. All authors have read and agreed to the published version of the manuscript.454

Funding: This research has received funding from the European Union’s Horizon 2020 research and455

innovation programme under the Marie Skłodowska-Curie grant agreement No. 812730.456

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2021                   doi:10.20944/preprints202112.0121.v1

https://doi.org/10.20944/preprints202112.0121.v1


Energies 2021, 1, 0 19 of 27

Acknowledgments: Special gratitude to Javanshir Fouladvand and Carlo Corinaldesi for fruitful457

discussions and thoughtful suggestions.458

Conflicts of Interest: The authors declare no conflict of interest.459

Abbreviations460

The following abbreviations are used in this manuscript:461

462

ABM Agent-Based Model
ABS Agent-Based Simulation
DH District Heating
EC Energy Champion
LD Linear dichroism
EEP Energy Efficiency Program
MAS Multi-Agent Systems
ODD Overview, Design Concepts and Details
ODD+D Overview, Design Concepts and Details + Decision-making
OOP Object-Oriented Programming
PV Photovoltaic Systems
RA Relative Agreement (algorithm)
RE Renewable Energy
SLR Systematic Literature Review
TPB Theory of Planned Behaviour
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Appendix A Previous review articles

Table A1. List of previous review articles

Study Focus of the review * Type of
review

Number
of re-

viewed
papers

Covered aspects Key conclusions

[100]

Application of ABM in the
built environment domain

(building energy and
indoor-environmental

performance)

selective 23

Motivational background, approach for representation of
both people (and their behaviour) and environment (e.g.

case studies), implementation tools, state of ABM
development and its future directions in the domain of

buildings’ energy and indoor-environmental performance

Motivation of the studies analyzed: to realistically capture
the interactions between occupants as well as the interactions
between occupants and their surrounding built environment.

[37]
Application of ABM in

studying climate-energy
policy

selective 61

Reasons for using ABM, number and types of markets
represented (e.g. transportation, electricity, financial

services), empirical basis, time horizon, agent types and
numbers, types of bounded rationality, social interactions

and networks; link between model features and policy
results

3 main themes identified: focusing on policies that (1)
directly trigger emissions reduction, (2) stimulate the

diffusion of low-carbon/energy products and technologies,
and (3) encourage energy conservation in other ways.

Research gaps are identified.

[35]

Application of ABM in the
built environment domain

(building energy and
indoor-environmental

performance)

systematic 62
Thematic analysis from a multi-level perspective of energy

transitions; Modelling complexity in energy transitions
(complexity categories).

6 topic areas identified: Electricity Market (25), Consumption
Dynamics/ Consumer Behaviour (12), Policy and Planning
(9), New Technologies/ Innovation (7), Energy System (6),
Transitions (3). Application in Policy and Planning is very

important (drives energy transitions).

[36] Adoption of energy efficient
technologies by households systematic 23

Technologies studied, barriers to the adoption of energy
efficiency, policy measures that are explored using the ABMs,
theories used to describe decision making of households and

the use of empirical data

Modelled policies: subsidies, regulation and taxation,
technology ban, household adoption obligation and various
information campaigns. Many of the models are rooted in
the TPB, use utility functions, and/or use empirical data.

[22]

Application of ABM for
understanding technology

diffusion of residential
energy efficient

technologies and to
evaluate policies’ effects on

adoption.

selective -
Types of ABM approaches (both theoretical and empirical);
applicability and limitations of ABM for modelling of the

uptake of en-eff tech-s in energy sector

Key components of ABM for describing the adoption and
key decision when intending to model the uptake of

energy-efficiency technologies. ABM can model technology
diffusion with at least the same accuracy as equation-based

modelling when appropriately parameterised based on
empirical data, calibrated based on macro-level data, and

validated using sensitivity analysis.
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Table A1. Cont.

Study Focus of the review * Type of
review

Number
of re-

viewed
papers

Covered aspects Key conclusions

[17]

ABM work in the area of
consumer energy choices,

with a focus on the demand
side of energy to aid the

design of better policies and
programmes

selective,
critical

about
60

Limitations of non-ABM approaches, framework for
describing the essential features of ABM, use of ABM in

practice

Two major types of energy-demand questions that ABM is
well-suited to answer: those related to policy design and

evaluation, and those related to system design and
infrastructure planning.

[44]
Application of ABM for

analysing smart grids from
a systems perspective

selective 23

How ABM can be used to analyse electricity systems;
typology of agent-based research of electricity systems;

review of literature specifically studying smart grids using
ABMS techniques is reviewed

ABM is still a limited field of research, but can deliver
specific insights about how different agents in a smart grid
would interact and which effects would occur on a global

level. Valuable input for decision processes of stakeholders
and policy making.

[45]

Overview of AB electricity
market models and present
the most relevant work in

detail.

selective 31

Comparison of current AB electricity models,
Methodological questions: Agent learning behavior, Market
dynamics and complexity, calibration and validation, Model

description and publication.

Choice of specific learning algorithms, more careful and well
documented validation and verification procedures as well

as the appropriate publication of details of concrete
simulation models are crucial for the further development of

AB electricity market modeling.

[101]
Study of the ABM

simulation packages for
electricity markets

selective 4

Overview of electricity markets, general-purpose ABS tools
to introduce some background of ABS, detailed study of four

popular ABS packages for Electricity Markets (SEPIA,
EMCAS, STEMT-RT, NEMSIM).

ABS packages are divided into 2 types: toolkit (Netlogo,
Repast) and software (AnyLogic, AgentSheets)
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Appendix B Technologies and Policies

Table A2. Agents, decision frameworks and representation of agent interaction

Study Technologies Decision regarding
technology (Policy) scenarios

[47] No technol-
ogy

Energy-saving in
buildings

No policy; insights for energy feedback
methods, for any building stock

[50] PV Adoption No policy

[58] PV Adoption

Subsidies for low-income and high-income
classes; a discount voucher proposed by PV
sellers; an information campaigns on envi-
ronmental issues & on adopting PV

[67]
Feedback de-
vice (i.e. CO2-
meter)

adoption and result-
ing energy-efficient
heating behavior

Promotion-type policies (i.e. marketing
strategies) to support product diffusion: giv-
ing away, lending out and raising awareness
about CO2-meter/feedback device.

[66]
Feedback de-
vice (i.e. CO2-
meter)

adoption and result-
ing energy-efficient
heating behavior

No policy; incentives and financial supports
for PV systems are included in economic
factors

[59] PV Adoption No policy

[60] PV Adoption

"Self-consumption Communities": building
owners can install PV and sell the electric-
ity to their tenants at prices lower than the
retail price of electricity

[3] PV Adoption

No policy; different renewable energy mod-
els (e.g., solar community, buy/lease PV, etc)
with different conditions (price, time, etc)
for agents to adopt

[61] PV Adoption

No policy; different renewable energy mod-
els (e.g., solar community, buy/lease PV, etc)
with different conditions (price, time, etc)
for agents to adopt

[62] PV Adoption No policy

[71] PV Adoption Carbon price as a climate policy scenario

[51] PV Adoption
Rebates for low-income households (i.e.
households in the bottom quartile of wealth,
proxied by home value).

[63] PV, green roof Adoption Investment Tax Credit, promotional cam-
paigns

[64] PV Adoption

Self-consumption scheme (PV elec-
tricity is sold at market price) and
Citizen/Renewable Energy Community
scheme (share the electricity produced by a
single PV unit with many citizens, e.g., in a
condominium)
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Table A2. Cont.

Study Technologies Decision regarding
technology (Policy) scenarios

[68] Smart meter
learning after SM
adoption, energy-
saving behaviour

No policy; insights for facilitation of learn-
ing following the smart meter roll-out

[73] DH network project development

Forcing the Local Authorities to have a heat
strategy; increasing the availability of cap-
ital finance for all DH project instigators;
support community instigators, i.e. include
proactive LA (Energy Leader) and support
at every stage of the DH development

[72]
Renewable
heating tech-
nology

joining or exiting a
thermal energy com-
munity

No policy

[74]
Electric appli-
ances, insula-
tion

purchase No policy described, but the model is capa-
ble

[70]

Weather-
proofing
("weath-
erization"
for winter)
technology

Adoption

Publicly funded Weatherization Assistance
Programs that are intended to help low-
resource residents improve the energy ef-
ficiency of their homes

[75]
Insulation, re-
newable heat-
ing

investments in new
technology

No policy; changes in natural gas price and
electricity price are taken as proxies for mar-
ket forces and policies

[76]
insulation, re-
newable heat-
ing

investments in new
technology

Fiscal policy (i.e. linear growth of natural
gas taxes, taxes on electricity, and regulated
price of heat from networks) and disconnec-
tion from gas network.

[69] Renovation
technology renovation decision No policy

[77] No technol-
ogy

energy-saving be-
haviour

Range of external situational factors are
tested: social norms related to energy sav-
ing, popularization of economic energy-
saving policies, etc.

[48] No technol-
ogy

energy-saving be-
haviour No policy; insights for EEP

[49] No technol-
ogy

energy-saving be-
haviour

No policy; insights for normative interven-
tions (ecofeedback programs)
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