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Abstract: There is an increased interest in the district-scale energy transition within interdisciplinary
research community. Agent-based modelling presents a suitable approach to address variety of
questions related to policies, technologies, processes, and the different stakeholder roles that can foster
such transition. This state-of-the-art review focuses on the application of agent-based modelling for
exploring policy interventions that facilitate the decarbonisation (i.e., energy transition) of districts
and neighbourhoods while considering stakeholders” social characteristics and interactions. We
systematically select and analyse peer-reviewed literature and discuss the key modelling aspects, such
as model purpose, agents and decision-making logic, spatial and temporal aspects, and empirical
grounding. The analysis reveals that the most established agent-based models’ focus on innovation
diffusion (e.g., adoption of solar panels) and dissemination of energy-saving behaviour among
a group of buildings in urban areas. We see a considerable gap in exploring the decisions and
interactions of agents other than residential households, such as commercial and even industrial
energy consumers (and prosumers). Moreover, measures such as building retrofits and conversion to
district energy systems involve many stakeholders and complex interactions between them that up
to now have hardly been represented in the agent-based modelling environment.

Keywords: agent-based modelling; agent-based simulation; urban energy system; district energy
system; systematic literature review; net-zero energy district; positive energy district

1. Introduction

Deep decarbonisation of the building sector in the EU is one of the key prerequi-
sites for becoming climate neutral by 2050, as buildings account for around 40% of final
energy consumption [1]. In this regard, “zero energy” building concepts, which largely
rely on reduced energy demand and on-site renewable generation, have recently gained
considerable interest in both scientific literature [2-7] and in practice [8]. However, some
researchers argue that dense and compact buildings on small plots have a small potential
for an on-site renewable generation [2,9] and can hardly achieve zero energy balance. Thus,
the expansion of building-level “zero energy” concept to the scale of neighbourhoods,
districts and communities is a potential alternative solution. With this motivation, several
concepts that aim to acheve zero or positive energy balance, such as Net-Zero Energy
Neighbourhoods (or Districts) [2,4,10], Plus-Energy Quarters [11,12], and Positive Energy
Districts [13-15] are being implemented currently.

Increased interest in such neighbourhood or district-level concepts as a solution for
energy and climate issues, raise a multitude of new questions, the most generic of them
being: “what socio-techno-economic conditions support the transition of urban districts
towards zero and positive energy districts?”. More concretely, what policies, technologies
and processes can foster this transition? In this context, it is becoming even more critical to

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6803-5777
https://orcid.org/0000-0003-3350-7134
https://orcid.org/0000-0001-6732-6919
https://orcid.org/0000-0002-7630-6511
https://www.mdpi.com/article/10.3390/en1010000?type=check_update&version=1
https://doi.org/10.3390/en1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en1010000
https://www.mdpi.com/journal/energies
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202112.0121.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 December 2021 d0i:10.20944/preprints202112.0121.v1

2 0f27

understand the perspectives and roles of various stakeholders, including households, firms
and public institutions, as their participation (e.g. via energy conservation, prosumption
and energy trading, infrastructure development) in transitioning to a decarbonised society
can be supported by well-designed and inclusive policies and programs [16,17].

Within a broad selection of models used in energy system analysis [18], Agent-based
Modelling (ABM) approach is distinguished by its ability to represent individual decision-
making of heterogeneous actors, as well as interactions between them [19,20]. Moreover, it
is a simulation-type model that allows defining micro-level action and interaction rules,
leading to macro-level emergent insights [21]. Hence, it is deemed suitable for exploring
policy-related “what-if” questions and incorporating actors’ perspectives in the energy
system [16,17,22].

This article aims to obtain an overview of how ABM has been used to model policy
interventions that facilitate the decarbonisation (i.e. energy transition) of building-related
urban district energy systems and consider stakeholders’ social characteristics and interac-
tions. We use systematic literature review (SLR) to select the studies and discuss critically
the important aspects of ABMs, such as modelling choices and agent characterisation.
Hence, this SLR serves as a starting point for those who want to understand how ABM can
simulate urban district-level energy transition and contributes with:

e A detailed insight on how ABM has been used in modelling urban district’s (building-
related) energy systems while considering stakeholders and policies;
A discussion of modelling choices and methodologies;

e Identification of research gaps and potential application streams.

This paper is structured as follows. Section 2 provides the context to this research
topic by defining urban district energy systems and summarising the previous research on
applying ABM to model energy systems. It is followed by the description of our approach
for the systematic selection and review of the articles in Section 3. The main results of the
review are presented in Section 4 and organised in different thematic subsections related
to essential aspects of ABMs of urban district energy systems, namely: model purpose
and outputs, agents, their decision-making and interaction rules, technologies and policies
covered, spatial and temporal aspects, as well as experimental setup of simulations, use of
empirical data, and implementation platform used. The paper is finalised with synthesised
observations and future research suggestions in Section 5.

2. Background and Definitions

In this section, we lay down the foundations for the topic of our focus. Namely, we
want to refer to the existing literature and define the urban district energy system. Secondly,
we discuss the state-of-the-art of ABM’s application in the energy systems research.

2.1. Urban district energy systems and models

The energy system is defined by the IPCC [23] as: “all components related to the
production, conversion, delivery, and use of energy.” The energy system is also seen as
a socio-technical system, comprised of more than just technical components, but also
markets, institutions, consumer behaviours and other factors that affect the construction
and operation of technical infrastructures [24].

The differentiation of energy systems into “urban” and “district” is generally about
defining the system’s scope. In Europe, “urban areas” refer to cities (i.e. densely populated
areas), towns and suburbs (i.e. intermediate density areas), as opposed to rural (i.e. sparsely
populated) areas [25]. According to the motivation and purpose of this work, we look at
the studies that address the energy system challenges of densely populated urban areas.

Depending on various national contexts, “districts” and "neighbourhoods" can denote
different administrative and non-administrative areas of cities or countries. Like [6,7,26],
we do not refer to certain juridical or administrative areas, but as part of an urban area.
Hence, everything from a small to a large group of buildings is considered a "district"
within this work. Due to the inconsistent use of the similar terms in the literature, the
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Figure 1. Representative application field of Multi-Agent Systems (adapted from [44]

synonyms of "district" such as "neighbourhood", "quarter”, "block" and "community" are
included in the analysis.

It is important to note though, that the search for “district energy systems” brings to
district-scale energy systems, be that traditional district-level thermal and hybrid energy
systems (e.g. cogeneration) [27-30] or distributed energy systems such as PV, solar thermal,
battery storage [31-34]. However, consistent with the above-mentioned definitions of
[23,24], we keep the scope of "district energy system" broader and do not limit it to the
technical components only.

There are various energy system modelling approaches and tools that can be or are
used at the district-scale for different purposes [24,31,34]. As [31] conclude about the
numerous urban district-level energy models and tools: “some tools aim to provide a single
simulation that addresses many issues, while others give detailed results regarding specific
parts of the system”. Although the advantages of ABM in studying complex systems
and enabling the analysis of policies are acknowledged [17,24,35-37], its role in studying
district energy systems, to the authors’ knowledge, has not yet been explored in detail.

2.2. Agent-based modelling in energy systems research

ABM is a modelling approach that can be seen as one of the applications of a software
engineering paradigm named “Multi-agent systems” (MAS) [38]. (Some application fields
of MAS are represented in Figure 1). There is an ambiguity between MAS and ABM. How-
ever, the general understanding is that MAS is an overarching architecture or paradigm,
which, when applied for simulating various phenomena by abstracting real-life systems
(e.g. human, animals, organisations) is usually called ABM or Agent-Based Simulation
(ABS). Whereas MAS-based engineering deals with applying the MAS architecture to create
a software or control system, ABM applies MAS paradigm to draw implications about
other systems (e.g. human settlements, stock markets, etc.). The common point between
MAS-based engineering and ABM is in the desire to understand a complex system by as-
suming a distributed or autonomous behaviour instead of centralised or equation-governed
behaviour of system elements (e.g. like in System Dynamics approach). Hence, the terms
“multi-agent-system”, “multi-agent-based-modelling” and “agent-based modelling” are
sometimes used interchangeably in the literature [39-42]. However, the difference of these
two approaches, namely that ABM sets up agents with characteristics of real-world analogy
to see what happens when they act, while in a multi-agent system, agents are defined with
certain characteristics, connections and choices, such that they achieve specified emergent
states [43].
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ABM can, thus, be more specifically understood as a computer simulation of an artifi-
cial world populated by agents — discrete decision-making entities (individual, household,
firm, etc.) — whose behaviours and rules of different complexity can govern interactions.
One of the main reasons for choosing ABM over traditional equation-based modelling
approaches in energy systems analysis (i.e. system dynamics, optimisation models, com-
putable general equilibrium models) is its ability to incorporate heterogeneity and adap-
tivity of energy consumers [45]. In the energy system research, this strength has been
exploited for: (a) analysing the demand side of energy system [17], e.g. incorporating occu-
pant behaviour in buildings [46,47]; (b) better-informing policy-making and infrastructure
planning [22,36], e.g. determining target groups for interventions [48,49] or recommenda-
tions specific to the adoption of particular renewable energy or energy-efficient technologies
[3,50,51].

As the number and publication date of review papers indicate (see Table Al in Ap-
pendix B), the first applications of ABM in energy research were for representing wholesale
electricity markets to analyse market structures [45]. The possibility of using ABM for
questions related to smart electricity grids and markets, such as the integration of demand
response and distributed generation in local or centralised markets, is explored by [44].
The potential of ABM to improve our understanding of consumer energy demand, by
allowing to account for social, behavioural, economic, technological, and market and policy
factors that influence energy demand is presented by [17]. Questions that interest energy
economists and policymakers are how consumers adopt energy-efficient technology and
how to encourage them. The benefit that ABM can bring to this stream of research, as well
as barriers and incentives for the adoption of energy-efficient measures in the residential
sector are addressed by [22,36]. Though our review topic overlaps with theirs, we do not
focus on the ABMs of “innovation diffusion” only and explore a wider range of approaches.

3. Methods

This work is based on the literature review type originating in biomedical and health-
care research and becoming prominent in energy system research too [35,36] — systematic
literature review (SLR).

The current SLR is carried out on the 13th of September, 2021 in the Scopus database
only. The main research question thereby is: “how ABM has been applied in studying the
urban district (building-related) energy systems?”. Accordingly, the search string provided
in the PRISMA Flow diagram in Figure 2 reflects this question. First, the literature suggests
many variations of agent-based concepts — simulations, models, approaches, as well as
“multi-agent” and “multi-agent-based” simulations, models, and approaches. Although
there are differences between MAS and ABM (see Section 2.2), they are sometimes used
interchangeably in the literature. Therefore, the studies referring to “multi-agent-based”
simulations were not excluded automatically but carefully checked. Second, the search
term “energy OR heat*” ensures that all studies mentioning energy or heat are captured.
Urban district energy systems are defined here as a group of buildings, heating and cooling
infrastructure, distributed energy resources (PV, battery, solar thermal, heat pump, CHP),
electricity distribution network, and energy producers, consumers, prosumers and other
relevant stakeholders in a given district or city. Hence, we exclude, for example, transport-
related studies, which returned 92 additional records in Scopus. Third, as explained
in Section 2.1, "district" is used interchangeably with "neighbourhood, quarter, block,
community. Moreover, sometimes city or town-level models are applicable to a smaller
scale too. Hence, we considered the article with at least one of the terms.

After a rigorous identification in the Scopus database and removing duplicated records,
further screening was performed using Scopus automatic filtering, reading titles and
abstracts. Journal and conference articles, written in English, accessible either openly or the
research institution’s library, and relevant to the energy research were filtered out. Finally,
full-text analysis has been applied to ensure the selected studies match the aim of this
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Records identified through Additional records identified Search string for advanced search in Scopus
database search (Scopus) through other sources TITLE-ABS-KEY ( {Agent-based} AND (model* OR
simulation OR approach) AND (energy OR heat* ) AND
(district OR city OR town OR urban OR community OR
neighbourhood OR quarter) AND NOT mobility AND
NOT transport* AND NOT vehicle)

Identification

Records after duplicates removed

Screening criteria

* Language: English only (2 excluded)

* Publication type: Journal and conference articles (52)
* Access: open access, via research institution (2)

* Discipline: only relevant to energy (57)

Screening

Records screened Records excluded

Full-text articles Full-text articles Reasons for non-eligibility
assessed for eligibility excluded, with reasons * Insufficient information/detail: 11
* One model published in different articles: 5
* Beyond the review’s scope: 34
* Focus on methodology of ABM only: 9
* Focus on technical aspects only: 48

Lo : . : * F ket and tradi ts only: 22
Studies included in qualitative synthesis oHSIanImArRERancIEamEIRIpestsony

Figure 2. PRISMA Flow Diagram of study selection for reviewing ABM of urban district energy systems.
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review. The exact reasons for exclusion together with the full SLR process are presented in
Figure 2.

After the papers have been selected, they are qualitatively analysed based on the
following key aspects of ABMs:

model purpose and outputs (Section 4.1)

agents (Section 4.2)

agent decision rules (Section 4.3)

agent interaction (Section 4.4)

technologies and policies modelled (Section 4.5)
spatial and temporal aspects (Section 4.6)
empirical grounding (Section4.7)

NG »N =

As already mentioned in one of the previous review articles [37], ABMs differ strongly
in how they are designed and implemented, so a quantitative comparison of models is
impractical. Therefore, we focused on the qualitative description of modelling choices and
methodological aspects within the selected ABMs. The defined thematic clusters of analysis
were inspired by the review approaches of [20,36], as well as by the Overview, Design
Concepts, and Details (ODD) protocol [52-54] - the attempt to formalise the documentation
of the ABM’s modelling process and results. Whenever included or implemented, the ODD
protocol improves the readability and ensures that the information needed to understand
and further analyse the models is present.

Within this work, we focus on the components of the energy system related to the
built environment of a district (i.e. buildings, heating, cooling, electricity supply systems)
and human individuals or groups. Thus, studies focusing on other sectors (i.e. transport,
industry, or agriculture and forestry) and elements (e.g. energy markets, information
systems, power network) of the energy system, though recognised as part of the energy
system, are outside the scope of this review.

4. Results: ABMs of urban district energy systems

This section presents the findings from the thorough analysis of 25 studies based on
model purposes and outputs, agents, their decision-making frameworks and interactions,
technologies and policies covered, spatial and temporal aspects, and empirical grounding.
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4.1. Model purposes and outputs

The review by [17] highlights that ABM is well-suited to answer two kinds of energy-
demand questions: those related to policy design and evaluation and those related to
system design and infrastructure planning. The review process reflects the existence of
these two motivations for modelling, of which we only focus on those that are relevant for
policy design. These studies evaluate the agents’ behavioural response to external stimuli
in the form of a policy, regulation, observation or feedback, and peer influence. Rai &
Robinson [51] present a well-validated example of an ABM used to test the influence of the
regulatory framework on adopting renewable technology. They examine how additional
rebates (i.e. partial refund of an item’s cost) for low-income households and changes in the
amount of rebate, affect the adoption of rooftop PV in Austin, Texas.

A model’s purpose or objective must be “clear, concise and specific” [52], which is
essential for others to understand why some aspects of reality are included in a model
while others are omitted. It is because each a model should be a “purposeful” abstraction
of reality [55]. The purposes of the 25 selected models are diverse. However, we identified
two main thematic clusters: diffusion and exploratory ABMs (see Figure 3).

Diffusion ABMs Exploratory ABMs

“Diffusion”: dissemination of technology, Aim: to explore various novel

practices; social learning. phenomena (e.g. establishment of
Thermal Energy Communities, energy-
saving behaviour) and the sociotechnical
conditions or policies that
facilitate/hinder those.

Aim: to analyse adoptions of energy-
efficient or renewable energy technology
by households, firms and other entities,
often due to certain policy interventions.
Outcomes: specific to the purpose (e.g.
number of households joining/leaving a
TEC)

Outcomes: number of adopters or
adopted units, energy or emissions saved
over time.

Figure 3. Two major thematic clusters based on model purposes within the ABM of urban district
energy systems

One large thematic cluster is the exploration of technology adoption that has its
foundations in innovation diffusion theories [56]. This type of ABM is often named “agent-
based diffusion model” [22,36,56,57]. They aim to analyse adoptions of energy-efficient or
renewable energy technology by households, firms and other entities, often due to certain
policy interventions [3,51,58-64]. Usually, such models” outputs are the number of adopters
or adopted units, energy or emissions saved over time (see Table 1). This approach allows
us to observe what factors affect the adoptions of technologies in which ways. The term
“diffusion” encompasses concepts like social learning and dissemination [65]. Thus, this
approach is also well-suited to represent the dissemination of energy-related practices and
behaviours, such as energy-saving [47,49], energy-efficient ventilation behaviour [66,67],
user learning (i.e. energy saving) after authoritative smart meter adoption [68], building
renovation behaviour[69], weatherisation (i.e. making apartments weather-proof) [70],
buying energy-efficient appliances and switching an energy provider [71]. Similar to
technology adoption, these studies investigate how energy-related behaviours are adopted
and how much energy can be saved. Three models [66-68] focus on both technology
adoption and the resulting behaviour dissemination.

The remaining works have more exploratory purposes and are less established than
diffusion ABMs. Fouladvand et al [72] investigate how Thermal Energy Communities
(TEC) can be formed and sustained, where agents can either join a new or existing com-
munity or decide to drop-out based on financial, technological and energy plan (e.g.
self-consumption) evaluations. Busch et al’s [73] model is distinguished from other models
by representing the continuous process of engagement and district-heating development
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Table 1. Model purposes and model outputs of the selected studies - Diffusion ABMs

Study Model purpose

Model output

[47]

[62]

[68]

Explore the effect of social-network char-
acteristics on the diffusion process of en-
ergy conservation

Examine the impact of information dif-
fusion algorithm on residential PV adop-
tion in city neighbourhoods

Test alternative policy scenarios for PV
adoption in a neighbourhood

Design and test marketing strategies for
feedback devices (CO2-meter) to iden-
tify which would be most effective

Identify the effect of the ‘CO2 meter’
(feedback device) on energy-efficient
heating behaviour

Analyse diffusion patterns of rooftop PV
under the influence of five factors on the
adoption

Explore individual and community so-
lar PV adoption under the Energy Act
in Switzerland

Test consumer adoption behaviours
over time in the presence of different
renewable energy options

Predict the consumer adoption of differ-
ent renewable energy models and to de-
termine the resulting impacts on energy
system performance

Determine the effect of PV diffusion on
the profitability of utilities

Observe the impact of socioeconomic
heterogeneity, social dynamics, and
carbon pricing on individual energy-
related decisions

Test the effect of solar rebates on PV
adoption

Determine the diffusion rate of the green
technologies under uncertainties caused
by climate change, characteristics of
adopters, and their interactions

Assess the impact of switching from the
self-consumer paradigm to a jointly act-
ing renewable community on adoption
rate of rooftop PV in a city district

Study user learning in authoritative
technology adoption based on the case
of smart meter deployment in Leeds

% energy savings from different feed-
back methods with various social net-
work characteristics

Number of new and total adopters over
time

Number of PV adoptions per year (sim-
ulated vs real data), spatial visualisation
of total adoptions

Technology and shock ventilation be-
haviour adoption for different lifestyles

Adoption numbers with various mar-
keting strategies (awareness, give-away
device, training) and their locations

Number of adopters over time; spatial
representation of adoption

Installed capacity of individual and com-
munity PV systems over time

Number of adopters by renewable op-
tions, restricted households, % of neigh-
bourhood RE

Utility and solar installer revenues, total
power added to the grid, total number
of adopters, number of rooftop PV and
community solar adopters over time

% of buildings with installed PV, %
of new installations per year, % of de-
mand met by PV, spatial representation
of building adoption.

CO2-emissions over time; avoided CO2-
emissions by each type of behaviour (in-
vestment, conservation, switching sup-
plier)

Cumulative number of PV systems over
time; thematic maps with spatial dis-
tribution and density of PV systems
adopted

Number of installed technologies over
time, under six different policies

kW installed over time, number of new
adopters per year, spatial distribution,
typical daily production-consumption
profile

Average daily electricity load curve
(kW), number of experienced users,
agents’ attitude and energy-saving
awareness over time
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instead of instantaneous decisions (e.g. to adopt, to invest). In these studies, the output
metrics are very specific to the purpose and subject studies (see Table 2).

4.2. Agents

Agent is a key element in this modelling approach. Many previous studies highlight
that there is no common definition of an agent [44,78], as its properties depend on the
model’s purpose and application area. Nevertheless, many authors refer to the following
basic definition presented by [79]: “Agent is an encapsulated computer system that is
situated in some environment, and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives”. In the ODD protocol, agents are one
of the model’s “entities”, along with spatial units and the overall environment [54]. It is
due to the parallels between the agent-based modelling approach and Object-Oriented
Programming (OOP) (i.e. the ‘classes’ or its instances in OOP could be equivalent to
‘entities” in ABM). It might lead to confusion among readers who are new to Agent-based
modelling or use different implementation tools. In the current article, we differentiate
between agents and other entities, where we refer to “agents” as autonomous entities that
can make decisions (i.e. implement certain algorithms) and interact (i.e. obtain information
from its environment or other agents) in order to reach its objectives.

Most of the agents in the selected studies are “households” (15 out of 25) and three
studies also denote them as “energy consumers” [3,68,71] (see Table 2). Since most of these
studies model the adoption of PV or other technologies, “households” are most common
decision-makers in this regard. Majority of these models limit their agent population to the
households that live in a single-family building, because installation of renewable energy
in other types of housing (rented apartments, multi-family housing) is subject to additional
legal or physical constraints. However, few models are exceptions: [3,61] differentiate
agents into tenants and house owners, where only house owners can buy and install PV
and tenants can choose from green electricity or community solar program; [76] attempts
to represent group decision-making regarding heating system, insulation or RE system
installation in multi-family houses. In other models, building (or building block) owner
[60,69] and building agents [59] can make building-level decisions, i.e., adopting PV or
renovation. The rationale of these models is that there is only one building owner that can
make such a decision.

While the above-mentioned studies focus predominantly on one type of stakeholder,
there are few models that involve different types of stakeholders as agents [73]. For
example, in [73], instigator agents (i.e. local authorities, commercial, and community-based
developers) are driving the development of projects, whereas “projects” are management
agents responsible for carrying out actions on behalf of their parent instigators [73]. In
models with multiple types of stakeholders, it is becoming more challenging to draw a
line between agents and other entities, e.g. as in [47], as all of them are essentially realised
as classes. However, one can observe the tendency to call human-like entities “agents”,
e.g. instigator agents, and passive entities like grid cells and projects [73] as just “entities”.
Figure 4 summarises the types of agents we identified in the reviewed models.

The essential part of ABMs is decision rules that govern the actions of agents. Decision
rules are realised with the help of attributes that describe agents [43]. Moreover, interaction
and social influence play a significant role in agent’s decision making. Hence, the following
subsections give an overview of the decision-making rules and agent interaction strategies
implemented in the reviewed models.

4.3. Agent decision rules

Decision-making rules (also called behavioural rules, decision rules or models, or
just “rules”) are methods by which agents” dynamic states can change their value and
translate into agent action [43]. Behaviour is the overall sum of agent actions and state
changes [43]. However, authors often use the terms “actions”, “behaviours” and “decisions”
interchangeably [80]. The ODD protocol suggests to include a detailed description of
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Table 2. Model purposes and model outputs of the selected studies - Exploratory ABMs

Study Model purpose

Model output

[73]

[74]

[48]

Explore the development of heat net-
work business models by focusing on
the decisions and actions of local actors
in developing projects

Provide insights into factors influencing
the formation and continuation of TEC
initiatives

Explore policy scenarios and campaigns
aimed at reducing domestic energy de-
mand (i.e. economic scenarios affecting
energy prices and household income)

Explore the impacts of social inter-
actions on weatherization decisions
for households under pre- and post-
weatherisation conditions

Explore socioeconomic conditions that
could support the neighborhoods’ heat
transition over time while meeting the
neighbourhood’s heat demand

Explore how group decision-making in
strata buildings could affect the heat
transition in the owner-occupied share
of the housing sector in the Netherlands

Explore the development of the renova-
tion state of the building stock based on
renovation behaviour of different types
of homeowners

Analyse the effect of behavioural out-
comes in different policy situation due
to the influence of energy-saving be-
haviour and intentions

Find the near-optimum targets among a
social network of households in order to
participate in a typical Energy Efficiency
Program (EEP)

Investigate participants’ related factors
that can affect short-term and long- term
effects of these programs

Number of realised project by various
instigators (i.e. municipal, commercial
and community) over time

% of joined households (at initiation), %
of households who joined afterwards,
satisfaction of the households who
joined the community

Total energy demand (in 2049), factors
that affect the demand (income & fuel
price growth, external influences)

Number of weatherized households
(with and without Assistance Program,
with and without community leader, for
different memory lengths of agents, and
network characteristics)

Number of heating systems adopted at
certain combination of time horizon for
all, changes in natural gas price and
electricity price, fraction of households
that is able to compare combined invest-
ments

Individual preferences for thermal sys-
tems at the beginning of the simulation,
group lock out (when the Homeowner
Association can’t agree on the decision),
cumulative heating costs over time

Development of overall heat demand
(GWh/a) and number of buildings reno-
vated in the city over time

Descriptive statistical mean values of
different situational factors

Energy Index that changes due to the
EEP or the social interactions

Short-term (right after the eco-feedback
program) and long-term (after interac-
tions with other agents) efficiencies of
the program
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One type (“breed”)
of agent in a model

Several types (“breeds”)
of agent in a model

Urban
residents,
policy makers,
management

Households

(16/25)
Energy
consumers
(2/25)

Buildings/
Building

Instigators, agents

project (1/25)
managers,
grid cells

(1/25)

Buildings and
occupants
(1/25)

owners
(4/25)

Figure 4. Agents in the reviewed models

individual decision-making [81]. The information such as identifying subjects and objects,
the method, the uncertainty, and other aspects must be part of this documentation [81].
However, in practice, such protocols are rarely adhered to by the authors.

The articles describing the diffusion ABMs are more explicit about the decision-making
algorithms. In such models, agents decide to adopt or not adopt (i.e. to invest or not invest
in a certain technology or to perform a certain energy-related action) based on specific rules
or algorithms. Decision rules range from simple ad-hoc rules to most elaborate models,
such as psychosocial or cognitive models [43]. The classification of existing decision models
has been previously done by [80] (for human agents in ecological ABMs), [56] and [57] (for
agents in ABMs innovation diffusion) and [43] (for ABMs of socio-technical systems). The
ODD+D by [81] clusters agent decision algorithms based on the nature of the underlying
assumptions:

e theory-based (e.g. microeconomic and psychosocial models)

empirical-based (e.g. statistical regression models, heuristic rules),

e ad-hoc rules (i.e. dummy rules and pure assumptions that are not based on theories
or observations),
e combinations of the above methods (see Figure 5.

Decision rule types
Theory-based Empirical-based Ad-hoc rules

¢ Theory of Planned * (Quantitative) * Assumptions and * E.g. theory-based
Behaviour data-driven hypotheses and supported by
¢ Consumat * Qualitative empirical data
* Goal-framing information
theory (Stakeholder
... expertise)

Figure 5. Types of decision-making frameworks

Most of the diffusion ABMs cited in this article apply theory-based decision models,
namely, psychosocial (also called "socio-psychological" or "cognitive") and microeconomic
models. Psychosocial models are based on social psychology theories that assume that
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human decisions are based on psychological rules, rather than on rational economic
rules. The most frequently used psychosocial theory in the selected models is the Theory
of Planned Behaviour (TPB) by [82]. It states that human behaviour results from the
intention to perform the behaviour; individual attitudes, subjective norms, and perceived
expectations can influence the agent to perform such behaviour [83]. Usually, the more
favourable these three aspects of human psychology are, the stronger is the person’s
intention to perform a certain behaviour [83]. The standard form of TPB is static, i.e. it
describes how these three components are translated into intention and action at a given
time. The models by [51,66,67] are examples of implementing this theoretical model. Other
psychosocial models including “consumat” model by [84] in [68], Norm Activation theory
by [85] in [71], the goal-framing theory by [86] in [74], and Influence, Susceptibility, and
Conformity Model by [87] in [49], are also used. Several models rely on models from
microeconomic or network theories, namely on innovation diffusion models. Azar & Al
Ansari [47] draw on the opinion dynamics models by [88-90] to represent the effect of
energy feedback interventions among building residents.

Another class of frequently used agent decision-making model is the empirical-based
heuristic models. They are described as models “not built on any grounded theories” and
“having the impression of being ad-hoc” [57]. Agents are often assigned rules derived from
empirical data, and also model parameters are selected such that results match simulated
output against a real-life observation [57,80]. They might not represent the process of
agent decision-making very accurately or realistically, but have the advantage of being
easy to implement and to interpret [57]. Heuristic decision rules can be implemented
in various ways. Several modellers favour data-driven approaches, thus, implementing
machine learning algorithms, such as logistic regression models [59] and artificial neural
networks [77]. In this approach, several sets of factors that can affect the adoption of PV
or energy-saving behaviour, given that data about those factors are available, are tested.
The more qualitative approach is followed by [72] and [73], who created the decision rules
relying on the stakeholder’s expertise.

Some models rely on ad-hoc rules without any validated theory or empirical ground-
ing. Huang et al [70] derives the agents’ decision logic from relevant secondary literature
and assumes that social influence plays a great role in deciding to adopt weatherisation of
a dwelling. In this model, agents decide between adopting weatherisation with the Weath-
erization Assistance Program or without and it depends on several attributes, memory
length about the energy costs, current satisfaction level and information level about the
assistance program. Mittal et al [3] developed a decision model similar to [51], but do not
apply the TPB. The agents assess the affordability of PV options (i.e. buy, loan, community
PV) and the attitudinal factors in the corresponding submodels and make the adoption
decision based on certain if-else type rules. The remaining studies are summarised in Table
3.

4.4. Agent interaction

Emergent phenomena to be observed via ABM is the result of not only individual
decision-making but also agent interactions [21,78]. The behaviour of agents is often
influenced by the information fed from its environment, including other agents. In the
ODD the authors differentiate conceptually between ‘sensing’ and “interaction’: the first
concept defines what state variables of which other individuals and entities can an agent
perceive; the latter is the direct (via communication) or indirect (e.g. via a common resource)
interaction between agents or between agents and other entities. However, in practice it is
challenging to differentiate between those. For example, human agents’ social influence
(also known as "peer effect” or 'neighbourhood effect’) can be represented using either (or
even both) of those concepts, as it seen from the pool of the reviewed papers. Hence, in
this work, we consider "sensing’ as one of the ways of representing interaction (as depicted
in Figure 6).
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Implementation of ‘interaction’

: . . . i Abstract interpretation
Social network Sensing Combinations [ s
: or no interaction

| Network characteristics: topology, links per node, etc. ‘

—»| Interacting agents: all vs some; according to similarity/proximity

Frequency: how often do agents interact, e.g. every timestep or
randomly with certain probability

Influence characterisation: how strongly the agent is influenced,
e.g. Relative Agreement algorithm

Figure 6. Ways of implementing ‘interactions” and relevant modelling choices

In the selected studies, one must, first of all, differentiate between studies where
agents can interact and influence each other and those where agents do not interact. Only
two studies have not considered agent interactions in any way [62,69]. In [73] and [77],
interactions are considered as important, however, treated in an abstract and implicit way.
Table 3 shows how interactions are represented in each reviewed study.

The majority of studies which include agent interaction agents are often placed in a
network structure, often called “social network”, that imitates the relationship between
agents, through which they can exert an influence upon each other based on certain rules
(i.e. “peer influence” or “social influence”). The resulting structure allows modelling the
social interactions of agents, resulting in the spread of desirable, or non-desirable, ideas,
products, or behaviours [91,92] (also called “opinion dynamics”). One common way of
doing so is through making an agent’s decision dependent on other agents’ (either selected
group of agents or all agents) choice or decisions.

A social network typically consists of two components: individuals or agents (rep-
resented by nodes) and social connections (represented by edges or links). It can also
have various topologies, e.g. small-world network, and created by various algorithms,
e.g. Watts-Strogatz algorithm. Some modellers test the effect of varying the topology and
other characteristics (e.g. number of links per node) of social networks [47-49]. A modeller
should also specify between which agents interaction (or ‘sensing’) occurs, between all
agents or certain group of agents or between agents and other entities (e.g. grid cells). In a
social network, usually, agents that have a link can interact or the influence of connected
agents is more significant compared to those with whom the agent doesn’t have one. This
assumption is based on the empirical findings: friends and family have a larger impact
on each other’s behaviour than strangers [66,67]. In some cases, agents interact based on
similarity (also called "homophily’) [3] or geographical proximity [51] ('neighbour effect’).

Another choice that a modeller should take is regarding the frequency of interactions.
Huang et al [70], for example, let agents that are linked with each other interact every time
step, whereas "strangers" (without direct links) interact with a probability of 0.10. The
"strength" of the influence can also be characterised in various ways. The most used is
the opinion dynamics model by relative agreement algorithm, where agents with similar
opinions have a stronger influence on each other than those whose opinions are more
polarised [93]. To sum up, there are usually four key things a modeller should consider
when characterising an interaction of agents, as we summarise in Figure 6.

4.5. Technologies and policies modelled

This subsection discusses the technologies and policies that are in the scope of the
reviewed ABMs. Similar to [36], we identify which technologies and policies are explored
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Table 3. Agents, decision frameworks and representation of agent interaction

Study Agents

Decision framework

Interaction

occupants and

Theory-based: several

Opinion dynamic models (information ex-
change within own social networks with fol-

471 buildings opinion  dynamics lowing topologies: small world, scale free,
models
and random)
Theory-based:linear Opinion dynamics; Barabasi Albert model
[50] households threshold theory (scale free network)
[55] households Psychosocial: TPB Opinion dynamics; Watts-Strogatz small-
world network
Social influence changes the Subjective
[67] households Psychosocial: TPB Norms (TPB); Watts-Strogatz small-world
network
Social influence changes the Subjective
[66] households Psychosocial: TPB norms (TPB); Watts-Strogatz small-world
network
’Sensing’ in a geographic proximity (i.e. for
o Empirical-based: Logis- every additional neighboring adopter in
591 buildings tic regression <100m, buildings would be more likely to
adopt PV)
[60] building block Psychosocial: TPB Social influence changes the Subjective
owners norms (TPB)

[3] households

Ad-hoc rules

"Visual interactions’ (i.e. sensing) and infor-
mation exchange based on similarity within
own social networks (Watts-Strogatz small-
world network)

Interaction within and outside of fixed so-

[61] households Ad-hoc rules cial networks with a probability
building own-
[62] ers/ buildings Ad-hoc rules None
[71] energy con- Psychosocial: Norm Simple opinion dynamics model in a fixed
sumers Activation Theory social network
Opinion dynamics via Relative Agreement
[51] households Psychosocial: TPB (RA) algorithm; Small World network; inter-
action based on geographic proximity
Opinion dynamics via RA algorithm; Small
[63] households Psychosocial: TPB World network; interation in local (based on
the physical distance) and global networks
[64] households Psychosocial: TPB Op 1on dynamlcs via RA; Sl.na.l ! World net-
work; interaction based on similarity
energy con- Psychosocial: Con- .. .
[68] Opinion dynamics; Small world network
sumers sumat
instigators, .. ) :
[73] projects and Empirical-based: stake Abstract interpretation of ‘interaction’

grid cells

holder expertise
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Table 3. Continued

Study Agents

Decision framework

Interaction

Empirical-based: stake-

Opinion dynamics in a small-world social

[72] households holder expertise network
Psychosocial: ~ Goal- Interaction based on similarity in a social
[74] households framing theory network (no further details).
[70] households Ad-hoc rules Barabasi Albert model (scale free network)
[75] households Ad-hoe rules Sensing’ of group-decisions in the neigh-
bourhood
[76] households Ad-hoc rules Sensing’ of group-decisions in the neigh-
bourhood
[69] building own= 4 1.0c rules None
ers
urban  resi-
dents, policy- iy Ry
[77] makers, E.mlp zrzcal—{] ased: arlt(lﬁ Abstract interpretation of ‘interaction’
management cial neural networks
agents
Theory-based:  Influ-
ence, Susceptibility, Opinion dynamics, social network: Ran-
[45] households and Conformity dom, Small-world, Scale-free
Model
Theory-based:  Influ-
ence, Susceptibility, Opinion dynamics, social network: Ran-
[4] households and Conformity dom, Small-world, Scale-free
Model

using ABM. However, since the selected studies are not narrowed down to studies of
technology diffusion only, it gives a broader overview of the discussion subject.

4.5.1. Technologies

From the 25 reviewed models, technologies are relevant to 20, while the rest have
not modelled technology explicitly. Within these 20 studies, PV system, and specifically,
diffusion of PV is the most frequently explored topic, as there are ten studies which focus
on that (see Table 4). Majority of these studies consider the diffusion of a single technology:
rooftop PV [50,59,60,62,64], feedback device (CO2 meter) [66,67]. In some cases, there could
be several options are available for agents: [3,61] let agents choose between buying PV via
cash payment of a loan, adopting community solar (i.e. renewable energy community) or
opting for green electricity; [63] make agents choose the optimal solution for their rooftops
— either rooftop PV or green roof; [76] introduces the combinations of technologies as
“technology state” of a household (i.e. combination of heating system, insulation level, and
appliances). Building insulation or renovation is addressed in three studies [69,70,75]. Most
studies are interested in the adoption of technologies by households: under what conditions
are households willing to adopt these technologies, how does it affect their subsequent
energy consumption, etc. Zhang et al [68] call the latter “learning” and observes how the
installation and the subsequent interaction with this technology make them decrease their
energy consumption.

Finally, the five studies focus on the energy-related behaviour that is not directly linked
to a single technology. For example, [47-49,77] investigate how feedback interventions
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could be improved, so that building occupants consume even less energy. Although the
consumption of energy practically occurs as a result of interaction with certain technology
(e.g. heater, shower, computer), such details are ignored in these models in order to focus
on the macro-level phenomena, such as the interaction of occupants in their network
[47]. Similarly, [71] examined the effect of several actions (i.e. investment, conservation,
switching) in different socio-political framework conditions without emphasising the
technological aspects. For a more detailed description of the review articles regarding
ABMs refer to Appendix A, Table A2.

4.5.2. Policies

The selected 25 works can be the first split into those that explicitly model policy
interventions (11) and those that do not (14). The policies covered in the 11 models are of
two major types: ones that promote investment for energy-efficient technology (PV, DH,
feedback device, etc.) and those that encourage energy-saving behaviour. The examples
of the first type of policies are those that stimulate PV system investments [51,60,63,64],
assistance programs for weather-proofing [70], and promotional campaigns for feedback
devices [67]. The examples of the interventions for stimulating energy-saving are energy
feedback mechanisms [47]. Beyond these clusters, [71] introduces several carbon emission
price scenarios to see how it affects the emissions caused by household energy consumption.
Busch et al [73] explore various ways of encouraging different district heating (DH) system
developers and found out that creating policy specific to the motivations and capabilities
of different actors, enabling networking and learning, and supporting all stages of the
decision process is crucial for developing DH network successfully.

The prevailing share of the papers do no implement policies explicitly. They rather
explore various socio-economic or other aspects that can affect the policy design or help
policymakers make decisions or interpret the results of their model for policy-making [68].
For example, [75] investigates the socioeconomic conditions, such as value orientation of
the population, gas price changes, the time horizon for investment evaluation, that support
the transition to the natural gas-free economy.

The detailed description of how policies are implemented in the models are provided
in Table A2 (Appendix B).

4.6. Spatial and temporal aspects

Identifying the spatial and temporal scale of the models is important in order to un-
derstand the system modelled. Moreover, certain patterns and processes can be dependent
on the scale [94] and, thus, they need to be clearly stated. By spatial scale, we mean “geo-
graphic scale”, defined as a research area’s spatial extent in a study [94]. The geographic
scale of the models considered range from “group of buildings” [47] to an entire city, such
as Hamburg [69]. 16 studies describe community, or district, or neighbourhood-scale mod-
els, while nine studies are in city-scale [51,67-69,73,77]. Although these articles present
the models as having been applied to specific geographic scales (i.e. via case studies), it is
difficult to say if they can be scaled up or down, as it might depend on many factors.

The chosen scale in ABM usually determines the number of entities (i.e. agents)
covered [33]. This can be limited by computers’ processing capacity, especially if decision
algorithms are sophisticated, much data is used, or a considered city is very large, e.g.
like in [59]. Therefore, the majority of selected models opt for district or neighbourhood
scale. Those whose models are in city-scale focus on smaller cities of about 100-150,000
[62,66,67]. Only one model has modelled a city of approx. 174,000 households and the
simulation had to be carried out on a supercomputer [51]. There are also such models
whose scale depend on the topic of research. For example, DH network development is
usually city-scale phenomena [73], the development or properties of energy communities
are explored on a neighbourhood or district level [3,72].

Although traditionally ABMs have not focused on the geographic environment and
spatial representation, more and more models are striving to represent space explicitly
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and realistically (e.g. using GIS techniques) [95]. According to [95], models can have three
levels of spatial explicitness: 1) implicit and non-geographic representation of space (e.g.
social networks that are only partially tied to space); 2) explicitly represented but abstract
in how it maps onto reality (e.g. Schelling’s segregation model); 3) explicit and realistic
spatial representation. Among the reviewed models, only a few are spatially explicit and
realistic. For instance, [51,58,59,64] join building information with actual geographical
locations of those buildings and have a clearly defined boundaries of the study area. The
rest of the models integrate spatial properties in different, semi-abstract ways. For example,
in [3,61] agents in the same community, i.e. neighbours, are defined by a community ID,
and each agent in a community becomes aware when somebody in that community installs
aPV.

The temporal scale is a duration of a process observed, i.e. time horizon between
the start and end of a single simulation run. Temporal resolution represents the unit
of a time step in a considered model. According to temporal scale and resolution, the
reviewed studies have time horizons of several years and resolutions of 1 month or three
month-periods. These models have large simulation horizons and resolutions because
the behavioural dynamics captured in those models occur in lower temporal resolutions.
For example, in real life, people’s attitudes do not change in a matter of hours. Such time
horizons and resolutions are characteristic of policy-guiding models, aiming to observe
the effect of a policy intervention over the years. In their models, [59] and [51] choose the
years when adoption data are available, which makes it possible to improve their empirical
model in such a way that the simulated outputs fit the real adoption data.

4.7. Empirical grounding

Empirical grounding of ABMs is becoming more important, especially for models that
aim to reflect a specific real-world situation and provide decision support for policymakers
and stakeholders [57,96]. As opposed to hypothetical or theoretical (or highly abstract)
ABMs, empirical ABMs use real-life data to parameterise models, initialise simulations, and
evaluate model validity [57]. Modellers try to improve the realism of agent decision-making
algorithms by consulting with system-relevant actors [72,73] or relying on empirical data
[59,64,66], e.g. geospatial information on buildings. It is becoming more feasible due
to the contemporary trends we observe the availability of high-resolution data sets, the
spread of open data culture in science, advances in data analytics, machine learning, and
computational power. Therefore, we aim to assess for what purpose, what kind of, and
how empirical data is used in the selected ABMs of district energy systems. By empirical
data, we mean both qualitative and quantitative data based on observation or experiment.

The review by [36] highlights that empirical data in ABMs are used for two general
purposes: (1) to form the agent decision-making algorithm; (2) to determine the specific
properties of technologies, policies, etc. that an agent can access to use in their decision
rules. In the first case, empirical data from surveys, statistical data (i.e. census), interviews,
and other sources are used to determine the attributes (both which attributes and their
values) of the agents that are further incorporated in a decision-making framework (as
described in Section 4.3). Jensen et al [66] describe how they utilised empirical data for
creating household agents and their social network in the appendix of their article. Building
data (i.e. floor area, spatial information, etc.) are connected to agents, and the commercial
geo-marketing data defines the “lifestyle” of agents, which further define their affinity
for technology and behaviour adoption. Social influence is modelled by introducing a
social network based on interviews with households. The second purpose of integrating
empirical data involves using statistical data and secondary literature to define other, for
example, scenario-relevant information or model parameters (i.e. global parameters). For
example, [47] use building energy consumption survey data to initialise the model-level
parameter “building energy intensity” and the number of agents in each building. However,
it is not easy to determine for all models for what the specific data is used, as authors
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do not sufficiently describe it. Sometimes the authors refer to another article for detailed
information about surveys or stakeholder interviews [73,74].

In general, there are three processes in model building where the use of empirical data
make models more reliable and realistic: parametrisation, calibration and validation [37].
The parameterisation is the process of connecting model and target system (i.e. the real
system being modelled) via assigning the set of parameters and their values to enable sim-
ulation [96]. In line with observations of [37], only a few modellers explicitly differentiate
their modelling process into these three phases. Moreover, if calibration and validation
are somewhat known to data-driven modellers, the process of parameterisation is not
recognised as much. Among the selected models, only [66,67] describe parameterisation in
more detail: they select the parameter values to reflect the empirical patterns of ventilation
behaviour adoption derived from survey data.

Calibration is the adjustment of parameters to ensure that model output matches the
relevant empirical data, e.g. in a specific location and application [37]. The difference
to validation is that the parameters are tuned to match a specific context (i.e. location,
time), which does not necessarily mean that the model will exhibit accurate results and be
predictive upon application in another context. To achieve that it has to be first validated on
a separate set of data independent of data used for calibration [57]. The following models
describe how they calibrated their models: [62] calibrates the parameters of the logistic
function governing the adoption of PV based on the secondary literature and publicly
available data; [63] performs the partial calibration (i.e. only of the financial submodel)
based on the values reported in the literature, experts’ opinions and publicly available
datasets; [66] provides an indirect calibration with three empirical patterns, the same
used for parameterisation in [67]. As for the remaining models, some do not differentiate
between validation and calibration [60], some call calibration “model fitting” [51], but
the majority do not mention calibration at all. Often authors mention the lack of data for
calibration as their limitations [63,73].

Validation aims to achieve the matching between the observations of the models and
reality. It should not be confused with “verification”, which is the process of making sure
the model implementation is carried out correctly with respect to the conceptual model
[97]. As ABM is a highly multi-disciplinary and flexible framework, its validation is a
highly debated topic. For more detail, we suggest referring to the works of [98] and [57]
that explore this topic in more detail. Our observations are mostly limited to the validation
processes provided in the selected works, the majority of which either do not mention
validation, state it as a limitation and future task, or have insufficient information on the
validation.

Among the models which consider validation, there are two following generic ap-
proaches. The first approach is an aggregate behaviour validation, mainly based on
statistical data fitting. Rai & Robinson [51] and Lee Hong [59] applied this way of valida-
tion, because they had empirical data on the number of adopters in a given location, over a
certain period. Lee Hong [59] use the Wald test (i.e. Wald Chi-squared test) which tests
the significance of a set of independent variables in a statistical model. Rai & Robinson
[51] first calibrate the six model parameters by an iterative fitting via historical adoption
data and then validate the model in terms of predictive accuracy, i.e. comparing predicted
adoption with empirical adoption level for the period starting after the last date in the
calibration dataset. Also, they carry out temporal, spatial, and demographic validation
[51]. Another group of modellers [47,49,73] pay more attention to the validation of social
processes and, by drawing on the work of [99], offer conceptual, operational or structural,
and technical validation (by this, [47] refer to verification). Conceptual validation is the
process of determining that the theories and assumptions underlying the conceptual model
are correct [99] and usually achieved by basing the model on validated concepts [47,49] or
the insights from stakeholder workshops [73].
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5. Discussion and Conclusion

This article reviews the state-of-the-art ABM approaches in the context of urban
energy systems. By analysing a pool of 25 carefully selected research articles, we observe
some key domains where ABMs are used to simulate agent decisions and stakeholder
behaviours in urban energy systems to guide policy design. This section summarises the
main observations of the review and highlights the avenues for further research.

In the district energy systems domain, the use of ABM for policy implications is
becoming more prominent. The ability of ABMs to model complex interactions of indepen-
dent agents enables the modellers to observe the broader implications of a specific policy
design. The model structure, agent types, decision models, spatial and temporal scales are
determined by the goals and the questions the ABM seeks to answer. Policy design studies
are very versatile when it comes to specific purposes: from evaluating particular measures
that stimulate the adoption of technologies, over studying the effect of social connected-
ness of households, to exploring novel concepts, such as the formation of thermal energy
communities. It is important to reiterate that the origin of ABMs was in social and natural
sciences. When ABMs become popular in other scientific fields, such as energy systems
research, scientists try to adapt the original ABM concepts to fit their specific purposes.
Such adaptations are often study-specific, and therefore, some essential modelling details
may get lost or unclear to the audience without careful and standardised documentation.
In this regard, the ODD protocol provides an essential standardised framework for model
documentation.

Our analysis shows tremendous potential in ABMs to help policymakers make better
policy decisions. The main challenge for future ABM applications in district energy systems
is whether the ABM concepts can evolve and scale-up to represent the complexity of agents’
decisions and interactions in a smart and decentralised energy system. Most of the reviewed
ABMs deal with the various questions around adopting energy-efficient or renewable
energy technology. These adoption decisions represent single-step investment decisions
dependant on one decision-maker. However, there is a vast field of opportunity when it
comes to exploring phenomena that involve multi-level decision-making and interactions
of various stakeholders. Building stock retrofitting and development of district heating
system are examples of such phenomena. Though a few exploratory ABMs investigate
these topics, there are no models that comprehensively study retrofitting decision-making.
Furthermore, the studied literature mainly deals with the energy issues of residential
neighbourhoods and not commercial or industrial entities. Therefore, we also find it an
exciting research avenue to explore whether ABMs, with their unique abilities, can answer
some of the challenging energy transition questions related to commercial and industrial
stakeholders.

Empirical data can be used to parameterise agent decision-making and provide con-
textual information to the model. Based on our analysis, we find significant gaps in the
use of empirical data. Only a handful of reviewed models have made an explicit effort
to clearly describe the use of data for parameterisation, calibration, validation, and veri-
fication purposes. Agent and model level parameter selection is often not given the due
respect and attention it deserves. As the energy system complexity and, hence, the model
complexity increase, careful parameterisation can significantly lower the computational
cost. Lastly, careful integration of empirical data for model calibration, validation, and
verification purposes significantly improves our confidence in the model and the results
for practical purposes.
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Abbreviations

The following abbreviations are used in this manuscript:

ABM Agent-Based Model

ABS Agent-Based Simulation

DH District Heating

EC Energy Champion

LD Linear dichroism

EEP Energy Efficiency Program

MAS Multi-Agent Systems

ODD Overview, Design Concepts and Details
ODD+D  Overview, Design Concepts and Details + Decision-making
OOP Object-Oriented Programming

PV Photovoltaic Systems

RA Relative Agreement (algorithm)

RE Renewable Energy

SLR Systematic Literature Review

TPB Theory of Planned Behaviour
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Appendix A Previous review articles

Table A1. List of previous review articles

Number
Study Focus of the review * Typ © of ?f re” Covered aspects Key conclusions
review viewed
papers
Application of ABM in the Motivational background, approach for representation of
built environment domain both people (and their behaviour) and environment (e.g. Motivation of the studies analyzed: to realistically capture
[100] (building energy and selective 23 case studies), implementation tools, state of ABM the interactions between occupants as well as the interactions
indoor-environmental development and its future directions in the domain of between occupants and their surrounding built environment.
performance) buildings’ energy and indoor-environmental performance
Reasons for using ABM, numl')er and types Of. marlfets 3 main themes identified: focusing on policies that (1)
- . represented (e.g. transportation, electricity, financial . . . . .
Application of ABM in . N T . directly trigger emissions reduction, (2) stimulate the
. . . services), empirical basis, time horizon, agent types and s .
[37] studying climate-energy selective 61 . . 1 . diffusion of low-carbon/energy products and technologies,
. numbers, types of bounded rationality, social interactions S
policy s . and (3) encourage energy conservation in other ways.
and networks; link between model features and policy . e
Research gaps are identified.
results
Application of ABM in the 6 topic areas identified: Electricity Market (25), Consumption
built environment domain Thematic analysis from a multi-level perspective of energy =~ Dynamics/ Consumer Behaviour (12), Policy and Planning
[35] (building energy and systematic 62 transitions; Modelling complexity in energy transitions (9), New Technologies/ Innovation (7), Energy System (6),
indoor-environmental (complexity categories). Transitions (3). Application in Policy and Planning is very
performance) important (drives energy transitions).
Technologies studied, barriers to the adoption of energy Modelled policies: subsidies, regulation and taxation,
[36] Adoption of energy efficient svstematic 23 efficiency, policy measures that are explored using the ABMs, technology ban, household adoption obligation and various
technologies by households y theories used to describe decision making of households and  information campaigns. Many of the models are rooted in
the use of empirical data the TPB, use utility functions, and/or use empirical data.
Application of ABM for Key components of ABM for describing the adoption and
understanding technology key decision when intending to model the uptake of
diffusion of residential Types of ABM approaches (both theoretical and empirical);  energy-efficiency technologies. ABM can model technology
[22] energy efficient selective - applicability and limitations of ABM for modelling of the diffusion with at least the same accuracy as equation-based

technologies and to
evaluate policies’ effects on
adoption.

uptake of en-eff tech-s in energy sector

modelling when appropriately parameterised based on
empirical data, calibrated based on macro-level data, and
validated using sensitivity analysis.
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Table A1l. Cont.

Number
Study Focus of the review * Typ.e of ?f re” Covered aspects Key conclusions
review viewed
papers
ABM work in the area of
consumer energy choices, . Limitations of non-ABM approaches, framework for Two major types of energy-demand questhns that’ ABM is
with a focus on the demand selective, about . . . well-suited to answer: those related to policy design and
[17] . . i describing the essential features of ABM, use of ABM in . .
side of energy to aid the critical 60 ractice evaluation, and those related to system design and
design of better policies and P infrastructure planning.
programmes
. How ABM can be used to analyse electricity systems; ABM s §t111 a limited field .Of research, bu? can deliver .
Application of ABM for - i specific insights about how different agents in a smart grid
. . . typology of agent-based research of electricity systems; . )
[44] analysing smart grids from selective 23 . . . . ’ . would interact and which effects would occur on a global
. review of literature specifically studying smart grids using . ..
a systems perspective . . . level. Valuable input for decision processes of stakeholders
ABMS techniques is reviewed . .
and policy making.
Overview of AB electricity Comparison of current AB electricity models, Choice of spec1f1c. lea.rmng algon.t }}ms., more careful and well
: . . . documented validation and verification procedures as well
market models and present . Methodological questions: Agent learning behavior, Market . L .
[45] . selective 31 . . ; . A as the appropriate publication of details of concrete
the most relevant work in dynamics and complexity, calibration and validation, Model . . .
. . L simulation models are crucial for the further development of
detail. description and publication. . .
AB electricity market modeling.
Study of the ABM Overview of electricity markets, general-purpose ABS tools
[101] simulation packages for selective 4 to introduce some background of ABS, detailed study of four ABS packages are divided into 2 types: toolkit (Netlogo,

electricity markets

popular ABS packages for Electricity Markets (SEPIA,
EMCAS, STEMT-RT, NEMSIM).

Repast) and software (AnyLogic, AgentSheets)
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Appendix B Technologies and Policies

Table A2. Agents, decision frameworks and representation of agent interaction

Study Technologies :)eSlcllsz)(l)(r:gyregardmg (Policy) scenarios
[47] No technol- Energy-saving in No policy; insights for energy feedback
ogy buildings methods, for any building stock
[50] PV Adoption No policy
Subsidies for low-income and high-income
. classes; a discount voucher proposed by PV
(581 PV Adoption sellers; an information campaigns on envi-
ronmental issues & on adopting PV
Feedback de- adoption and result- Promo.tion—type policies (i.e. . ma.rketir'lg
[67] vice (ie. CO2- ing energy-efficient strategies) to support product diffusion: giv-
me ter). ' heatine behavior ing away, lending out and raising awareness
& about CO2-meter/feedback device.
Feedback de- adoption and result- No policy; incentives and financial supports
[66] vice (i.e. CO2- ing energy-efficient for PV systems are included in economic
meter) heating behavior factors
option 0 polic
[59] PV Adopti No policy
"Self-consumption Communities": building
. owners can install PV and sell the electric-
[601] PV Adoption ity to their tenants at prices lower than the
retail price of electricity
No policy; different renewable energy mod-
. els (e.g., solar community, buy/lease PV, etc)
3] PV Adoption with different conditions (price, time, etc)
for agents to adopt
No policy; different renewable energy mod-
. els (e.g., solar community, buy/lease PV, etc)
[61] PV Adoption with different conditions (price, time, etc)
for agents to adopt
option 0 polic
[62] PV Adopti No policy
[71] PV Adoption Carbon price as a climate policy scenario
Rebates for low-income households (i.e.
[51] PV Adoption households in the bottom quartile of wealth,
P q
proxied by home value).
[63] PV oreen roof  Adoption Investment Tax Credit, promotional cam-
'8 p paigns
Self-consumption scheme (PV elec-
tricity is sold at market price) and
[64] PV Adoption Citizen/Renewable Energy Community

scheme (share the electricity produced by a
single PV unit with many citizens, e.g., in a
condominium)
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Table A2. Cont.

Study Technologies

Decision regarding
technology

(Policy) scenarios

[68] Smart meter

[73] DH network

learning after SM
adoption,  energy-
saving behaviour

project development

No policy; insights for facilitation of learn-
ing following the smart meter roll-out

Forcing the Local Authorities to have a heat
strategy; increasing the availability of cap-
ital finance for all DH project instigators;
support community instigators, i.e. include
proactive LA (Energy Leader) and support
at every stage of the DH development

Renewable joining or exiting a
[72] heating tech- thermal energy com- No policy
nology munity

Electric appli-

No policy described, but the model is capa-

[74] ances, insula- purchase ble
tion
Weather-
proofing Publicly funded Weatherization Assistance
("weath- . Programs that are intended to help low-
(701 erization" Adoption resource residents improve the energy ef-
for  winter) ficiency of their homes
technology

Insulation, re-
[75] newable heat-
ing

insulation, re-
[76] newable heat-

investments in new
technology

investments in new

No policy; changes in natural gas price and
electricity price are taken as proxies for mar-
ket forces and policies

Fiscal policy (i.e. linear growth of natural
gas taxes, taxes on electricity, and regulated

in technology price of heat from networks) and disconnec-
& tion from gas network.
[69] Renovation renovation decision No polic
technology potcy
Range of external situational factors are
[77] No technol- energy-saving  be- tested: social norms related to energy sav-
ogy haviour ing, popularization of economic energy-
saving policies, etc.
[48] No  technol- energy-saving be- No policy; insights for EEP
ogy haviour
[49] No technol- energy-saving  be- No policy; insights for normative interven-
ogy haviour tions (ecofeedback programs)
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