Preprint
Article

Two-stage Algorithm for Solving Arbitrary Trapezoidal Fully Fuzzy Sylvester Matrix Equations

Altmetrics

Downloads

255

Views

306

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

22 February 2022

Posted:

23 February 2022

You are already at the latest version

Alerts
Abstract
Many authors proposed analytical methods for solving fully fuzzy Sylvester matrix equation (FFSME) based on Vec-operator and Kronecker product. However, these methods are restricted to nonnegative fuzzy numbers and cannot be extended to FFSME with near-zero fuzzy numbers. The main intention of this paper is to develop a new numerical method for solving FFSME with near-zero trapezoidal fuzzy numbers that provides a wider scope of trapezoidal fully fuzzy Sylvester matrix equation (TrFFSME) in scientific applications. This numerical method can solve the trapezoidal fully fuzzy Sylvester matrix equation with arbitrary coefficients and find all possible finite arbitrary solutions for the system. In order to obtain all possible fuzzy solutions, the TrFFSME is transferred to a system of non-linear equations based on newly developed arithmetic fuzzy multiplication between trapezoidal fuzzy numbers. The fuzzy solutions to the TrFFSME are obtained by developing a new two-stage algorithm. To illustrate the proposed method numerical example is solved.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated