The article considers an approach to the problem of assessing the quality of speech during speech rehabilitation as a classification problem. For this, a classifier is built on the basis of an LSTM neural network for dividing speech signals into two classes: before the operation and immediately after. At the same time, speech before the operation is the standard to which it is necessary to approach in the process of rehabilitation. The metric of belonging of the evaluated signal to the reference class acts as an assessment of speech. An experimental assessment of rehabilitation sessions and a comparison of the resulting assessments with expert assessments of phrasal intelligibility were carried out.
Keywords:
Subject: Computer Science and Mathematics - Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.