In this paper we try to demonstrate that the classical model of certainty factos for dealing with innacurate knowledge can be efficiently implemented in a quantum environment. For this, we assume that certainty factors are strongly correlated with the quantum probability. We first explore the certainty factors approach for inexact reasoning from a classical point of view. Next, we introduce some basic aspects of quantum computing, and we pay special attention to quantum rule-based systems. We then build a use case: an inferential network to be implemented in both, the classical approach and the corresponding quantum circuit. Both implementations have been used to compare the behavior of the classical and the quantum approaches when confronted with the same hypothetical case. We analyze three different situations: (1) Only Imprecision (which refers to inaccuracy in declarative knowledge or facts) is present in the use case, (2) Only Uncertainty (which refers to inaccuracy in procedural knowledge or rules) is present in the use case, and (3) Both Imprecision and Uncertainty are present in the use case. Finally, we analyze the results to reach a conclusion about the eventually intrinsic probabilistic nature of the certainty factors model and to pave the way for future quantum implementations of this method for handling inaccurate knowledge.
Keywords:
Subject:
Computer Science and Mathematics - Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.