In this note we study the computation of the minimum polynomial of a matrix $A$ and how we can use it for the computation of the matrix $A^n$. We also describe the form of the elements of the matrix $A^{-n}$ and we will see that it is closely related with the computation of the Drazin generalized inverse of $A$. Next we study the computation of the exponential matrix and finally we give a simple proof of the Leverrier - Faddeev algorithm for the computation of the characteristic polynomial.
Keywords:
Subject: Computer Science and Mathematics - Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.