Preprint
Review

Function and Plasticity of Electrical Synapses in the Mammalian Brain: Role of Non-Junctional Mechanisms

Altmetrics

Downloads

169

Views

113

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 December 2021

Posted:

23 December 2021

You are already at the latest version

Alerts
Abstract
Electrical transmission between neurons is largely mediated by gap junctions. These junctions allow the direct flow of electric current between neurons, and in mammals are mostly composed of the protein connexin (Cx)36. Circuits of electrically coupled neurons are widespread in these animals, plus, experimental and theoretical evidence supports the notion that, beyond synchronicity, these circuits are able to perform sophisticated operations like lateral excitation and inhibition, noise reduction, as well as the ability to selectively respond upon coincident excitatory inputs. Although once considered stereotyped and unmodifiable, we now know that electrical synapses are subject to modulation and, by reconfiguring neural circuits, these modulations can alter relevant operations. The strength of electrical synapses depends on gap junction conductance, as well as on its functional interaction with the electrophysiological properties of coupled neurons. In particular, voltage dependent channels of the non-synaptic membrane critically determine the efficacy of transmission at these contacts. Consistently, modulatory actions on these channels have been shown to represent relevant mechanisms of plasticity of electrical synaptic transmission. Here we review recent evidence on the regulation of electrical synapses of mammals, the underlying molecular mechanisms, and the possible ways in which they affect circuit function.
Keywords: 
Subject: Biology and Life Sciences  -   Anatomy and Physiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated