Blackcurrant juice (Ribes nigrum L.) was subjected to supercritical carbon dioxide (SCCD) at 10, 30 and 60 MPa for 10 min at 45°C as well as thermally treated at 45°C and 85°C for 10 min to determine the stability, antioxidant capacity (AC) and bioaccessibility (BAc) of vitamin C, total anthocyanins and their individual monomers. An in vitro gastrointestinal digestion model completed with dialysis was used to assess BAc. The use of SCCD at each of the pressures applied improved the stability of vitamin C, total anthocyanins, and AC before in vitro digestion. As a result of digestion, L-ascorbic acid was oxidized to L-dehydroascorbic acid, and finally, the total content of vitamin C, anthocyanins, and AC decreased. SCCD did not significantly improve the BAc of vitamin C and total anthocyanins. The highest BAc of vitamin C was noted in fresh juice (FJ) (40%) and after mild heat treatment at 45°C (T45) (46%). The highest BAc of total anthocyanins was also noted in the FJ (4.4%). The positive effect of the application of SCCD on the BAc of the delphinidin-3-O-glycosides was observed compared to T45 and thermal pasteurization at 85°C (T85). Moreover, cyanidins were generally more bioaccessible than delphinidins in all samples. AC after digestion was higher in SCCD samples compared to thermally treated measured using ABTS+• and DPPH• assays, whereas in dialysate similar trends were observed only for AC measured using the ABTS+• assay. This phenomenon was justified by the formation of individual metabolites detected by UPLC-PDA-MS / MS in the model experiment with delphinidin-3-O-rutinoside. The protocatechuic acid which is well known as a strong antioxidant was detected in the model experiment after digestion. Further research is needed to better understand the metabolic pathway of anthocyanins and the possible uses of SCCD to improve the health properties of fruit products.