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Abstract: We review some recent developments about strongly interacting relativistic Fermi theories
in three spacetime dimensions. These models realize the asymptotic safety scenario and are used to
describe the low-energy properties of Dirac materials in condensed matter physics. We begin with a
general discussion of the symmetries of multi-flavor Fermi systems in arbitrary dimensions. Then we
review known results about the critical flavor number N, of Thirring models in three dimensions.
Only models with flavor number below N show a phase transition from a symmetry-broken
strong-coupling phase to a symmetric weak-coupling phase. Recent simulations with chiral fermions
show that Nt is smaller than previously extracted with various non-perturbative methods. Our
simulations with chiral SLAC fermions reveal that for four-component flavors Nt = 0.80(4). This
means that all reducible Thirring models with N; = 1,2,3,... show no phase transition with order
parameter. Instead we discover footprints of phase transitions without order parameter. These new
transitions are probably smooth and could be used to relate the lattice Thirring models to Thirring
models in the continuum. For a single irreducible flavor, we provide previously unpublished values
for the critical couplings and critical exponents.

Keywords: Model field theory, chiral symmetry breaking, parity breaking, dynamical fermions,
four-Fermi theories, Thirring model

1. Introduction

The Thirring model is a relativistic field theory for interacting fermions ¥, ¢. Its

vector-vector interaction )

2
Line = S (792 = STy, (1)

establishes (after bosonization) a close relation to QED but it is also studied in various
other contexts, e.g. as a test bed for non-perturbative methods, as an example of asymptotic
safety or as a toy model for chirally symmetric fermions. The coupling constant ¢> has
length-dimension (d — 2) and is dimensionless in 2 dimensions.

The 2-dimensional massless model was introduced and investigated by Walter Thirring
in 1958 [1] and represents an exactly solvable conformal field theory with analytically
known n-point correlation functions [2,3]. The massive model can be solved with the
Bethe ansatz which yields the mass spectrum and scattering matrix elements. In higher
dimensions the model in not soluble and not renormalizable in perturbation theory. But it
is renormalizable beyond perturbation theory — above 2 and below 4 dimensions it is the
prototype of an asymptotically safe theory [4].

We begin with discussing the symmetries of Thirring models with Lagrangian

2
L=Ly+ Zg—MW}w Lo =Y dul@+m)yn. )

for Nt flavors of fermions ¢y, ..., ¢, in arbitrary dimensions. Then we shall discretize
the models on a (euclidean) spacetime lattice with chiral fermions keeping all continuum
symmetries besides Poincare invariance. Finally we shall focus on the lattice models in 3
dimensions and discuss the possible breaking of symmetries, depending on the number of
flavors and the interaction strength. Finally we summarize the present status concerning
the critical flavor number NfCrit which separates the systems with spontaneous parity
breaking from those without symmetry breaking.

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.
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An irreducible spinor in d-dimensions has d; = 21d/2] components, where |a] is
the largest integer less or equal to 4. In euclidean space we can and will always choose
hermitian ¢# matrices. In even dimensions there exists one irreducible representation of
the Clifford algebra, whereas in odd dimensions there are two. The hermitean matrix

_jld/2]

Vi = A0yl g2 =1 3)

generalizes 75 to arbitrary dimensions. In even dimensions it anticommutes with the y*
and in odd dimensions it commutes with the v* and is 1 in one irreducible representation
and —1 in the other irreducible representation. The bilinear fields

N¢ Nt N¢
S=Y Pata, P=1i) Puveta, J'=) Pa¥"u 4)
a=1 a=1 a=1

are of particular interest here: the current density J# enters the Lagrangian of the Thirring
models and S, P may or may not condense in an equilibrium state. One should note that S
and P are not independent in odd dimensions because 7, o 1 is trivial.

2. Symmetries of Fermi systems

The symmetries of Thirring models with Lagrangians (2) are the usual (Euclidean)
spacetime symmetries (including parity), chiral rotations and charge conjugation.

Charge conjugation:

The transformation of spinor fields and y#-matrices under charge conjugation

Ye=Cy*, 7y =nClmC, nee{-1,1}, 5)

are used to investigate the sign problem in four-Fermi theories. Actually there are two
matrices C with 77, = %1 in even dimensions, one C with #. = —1 in 3 + 4n dimensions
and one C with #. = 1in 1 4 4n dimensions for n € Ny [5].

Parity:

A parity transformation flips the sign of a spatial coordinate, e.g.
x> x' =Px, P=(P)=diag(1,1,...,1,-1). (6)

Scalar and pseudo-scalar fields have even and odd parity, respectively. A spinor and its
conjugate transform according to

p(x) = gp(x) =Py(x),  P(x) = Pp(x') = ap(x)P ", @)
where the parity matrix P satisfies
PP =aPly, = P lynP = —aly., o2 =1. ®)
The density £,,—¢ is parity invariant, J# is a vector and P is a pseudoscalar,
Pp(x') = —P(x). )
The transformation properties of S depend on the dimension, i.e.
Sp(x") = aS(x), (10)

such that S is a scalar in even dimensions while S o P is pseudoscalar in odd dimensions
as detailed below.


https://doi.org/10.20944/preprints202201.0066.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 d0i:10.20944/preprints202201.0066.v1

30f20

2.1. Even dimension

In even dimensions there is only one irreducible representation of the Clifford algebra
and there exists a canonical choice for the free Lagrangian £,, with the same ¢ acting on all
flavors. For a vanishing mass the Dirac operator d anti-commutes with 7, and we may
rotate the chiral (left- and right-handed) fermions

1
Yo =Py = S(LE7) ¢, a1
independently among each other,
i Uspy, §o o U Uy, U € UN). (12)

These chiral rotations leave the Lagrangian of massless fermions £,,—o invariant. The
bilinear o« §¢p is only invariant under the diagonal subgroup with U, = U_. Thus, a mass
term or a condensate (i) break the chiral symmetry explicitly respectively spontaneously
to the vector flavor symmetry Uy (Ny).

In even dimensions there is a parity matrix P with « = 1 such that the bilinear S is a
scalar and P a pseudoscalar, see (9). In addition, there exist two matrices C which obey (5),
one for each sign of 7.

2.2. Odd dimensions

In odd dimensions there is no notion of chirality in an irreducible representation and
there are only the vector flavor rotations

Py Uy, ¢ —gut, UcUN), (13)

which leave £, in (2) invariant. The bilinears (4) are singlets under these rotations. In
odd dimensions there exists a parity matrix 7 which fulfills (8) with « = —1 such that the
bilinear S is parity-odd [5],

Sp(x') = —S(x). (14)

Actually, the bilinears S and P are not independent, S = +iP, since 7, = £1 in the two
irreducible representations of the Clifford algebra. We see that a mass term or bilinear
condensate break the Z,-parity symmetry explicitly or spontaneously.

The last statement applies to systems with odd N; only, as for even N; we can build
a parity invariant massive Lagrangian. For example, for Ny = 2 one combines the two
irreducible flavors to one reducible flavor and acts with the inequivalent irreducible repre-
sentations y# and —* on the upper and lower components,

Lo =Y(Fo, +m)¥, ¥= @;) M=o @yt. (15)

For the reducible system P = iy ® P is a parity matrix satisfying the defining relation (8)
with T* and « = 1 such that ¥¥ and hence £, in (15) are parity even. This construction
straightforwardly generalizes to an even flavor number Ny = 2N;. One just groups the
2N; irreducible flavors into N; reducible flavors ¥y, ..., ¥n,. The Lagrangian for the latter
reads!

N )
L = Z;Ta(r’lay +m)¥, + ZLM]H]”’ =Y ¥ IMY,. (16)
a= a

By construction this parity invariant reducible model is invariant under U(N;) = U(2N)
rotations. L;; can be obtained by a dimensional reduction of the Thirring model in one

1 we also rescale the coupling such that g2 /2N — ¢%/2N;.
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dimension higher. The various symmetries of reducible four-Fermi systems are well
explained in [4,6].

2.3. Fierz-identities

It may happen that two seemingly different looking four-Fermi theories are equivalent
on account of Fierz-identities. In 2 and 3 dimensions irreducible spinors have 2 components
only and there is a direct way to relate different one-flavor models. Indeed, for a 2-
component anti-commuting ¢ an arbitrary four-Fermi term (P A)? at a fixed spacetime
point must be proportional to 111, and

(pAY)? = det A (§yp)?, Ny=1, d=2,3. (17)

1. One-flavor models in two and three dimensions: The hermitian 2 x 2 matrices y* have
determinant —1 and we conclude

%(v?fr”w)z:—dziz(t/?w)% Np=1, d=23. (18)

It follows that the one-flavor Thirring model is equivalent to the one-flavor Gross-
Neveu (GN) model. Thus the latter is not only invariant under U(1) x Z; but also
under the larger symmetry group Uy (1) x Uy(1).

2. A comparable simple relation does not exist for Nt > 1 or d > 3. For example, the
general Fierz identity in 3 dimensions implies that for N; irreducible flavors

2

8 (i — & (T? — &N (G (g
@) = o P9 = L @Y, d=3. (19)

a,b

This means that the Thirring interaction is converted into a GN interaction plus a
tensor-tensor coupling.

2.4. Hubbard-Stratonovich transformation

It is possible to eliminate the four-Fermi terms in the Lagrangian by a Hubbard-
Stratonovich transformation with the help of an auxiliary vector field v,

- N,
L = §Dutp + 5> vu0" . (20)
28
The Dirac operator contains the auxiliary field,

Dy = " (9 +ivy,) +m. (21)

The classical systems with Lagrangians (20) and (2) are equivalent as follows from the field
equation for the auxiliary vector field. The equivalence also holds for the quantized system,
since vy, is non-dynamical, enters the Lagrangian at most quadratically and thus can be
integrated over explicitly in the path integral.

In passing we note that the equivalent one-flavor GN-model with interaction term (
18) in d = 2,3 can be bosonized with a scalar field ¢ as

- 1,
L=§@+mro)p+ 0. (22)
Interestingly, the fermion determinant of ¢ + ¢ is (generically) complex, whereas that of
Dy is real. This means that by a Fierz-reshuffling from the scalar into the vector channel
one can soften or even solve the ubiquitous sign problem.
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3. Critical Flavor Number of 3d Thirring models

In the following we focus on the 3-dimensional multi-flavor Thirring model. The
irreducible systems have Lagrangian (2) for a multiplet i of N; two-component spinor
fields and the reducible ones have Lagrangian (16) for a multiplet of N; four-component
reducible fields. There are several reasons for considering the subclass of reducible Thirring
models. First and most important, most applications in condensed matter physics deal
with Dirac-type materials where naturally one is lead to the parity-invariant reducible
models. The most prominent example is of course graphene, where low-energy electronic
excitations exhibit a linear dispersion around two Dirac points in the first Brillouin zone.
Second, most results in the literature are obtained for the reducible systems, and for an
ease of comparison we consider such systems as well. The reducible systems are obtained
by a torus-reduction of four-dimensional interacting Fermi systems.

The reducible models have no sign problem. For example, for one reducible flavor ¥
the fermion determinant of D¢ in

Lreq = YD + 222””””’ Ded = (Dom B ng> (23)
is det(m? — Dg) > 0, since Dy = D,,—o defined in (21) is anti-hermitean. Note that the
massive reducible model with N; flavors is not equivalent to the irreducible model with
2N; flavors. The two irreducible flavors have opposite mass and this explains why there is
no breaking of parity in the reducible model. Only in the limit 7 — 0 are the two models
equivalent. The passage from one to the other involves a relative rotations of the two
irreducible flavors which combine to a reducible flavor such that

Dt (730 1‘;0). (24)

At the same time the chiral condensate of one formulation transforms into the staggered
condensate in the other

(YY) = (P1y1) — ($a2), (25)

and vice versa.

3.1. Small and large-Ng limit

Integrating over the fermion fields in the (euclidean) functional integral with La-
grangian (20) yields

1 1
Z = /Dv,, e NeSettlon] g o = 2 /d3x 0124 ~3 log det(—D?). (26)
In the large-Ng limit the absolute minimum of S.¢ dominates the path integral such that

the free energy per flavor simplifies considerably,

1 Nf-}OO 1 .
F=———logZ — —minSqx|v,]. (27)
‘B Nf g ‘B Uy e [ H]
The Euler-Lagrange equation for S is just the gap equation which determines the min-
imizing field v,. For a translation-invariant equilibrium state the minimizing field is
homogeneous and for a constant v the eigenvalues of Dy come in pairs A which implies

det(—D?2) = det(Dd) . (28)
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This means that in the large-N; limit the irreducible and the parity invariant reducible
systems are identical, or that the irreducible models do not break parity. This observation
is supported by an explicit calculation of the free energy density (effective potential)

F 1

4 2
U, 0,0+ Ugee(T,m?), g2 " §ren (29)

ff — — — =,

Vo 28k 470+ Agfen
where A is the momentum cutoff. Besides the free energy density of the free Fermi gas one
only gets a renormalization of the Thirring coupling. The parity condensate is obtained
by differentiating U.g with respect to the trigger mass m. Since the derivative does not
depend on the auxiliary field we conclude

_ 0 0
(#9) = 5 - Utee = 0, Np— 0. (30)
Thus there is no parity condensate for a large number of flavors.
In the other limit Ny = 1 the Thirring model is equivalent to the 3-dimensional Gross-
Neveu model, see section 2.4, and the latter shows spontaneous breaking of parity [7].
Thus we have

(Pyp) #0, Ne=1. (31)

Since parity is broken for Ny = 1 and unbroken for Ny — oo we must conclude that there
exists a critical flavor number N{™ separating the systems with symmetry breaking from
those without symmetry breaking.

For reasons explained above the parity invariant reducible models are of particular
interest. In the limit Ny — oo they are identical to the irreducible Thirring models. Since the
parity breaking model with one irreducible flavor is not in the class of reducible models -
formally it has 0.5 reducible flavors — there is no compelling argument that there must exist
a critical flavor number N¢™t within the class of reducible models.

First investigations of Thirring models with Schwinger-Dyson equations, partly in
combination with a large-N; expansion, date back to the nineties of the last century. In
Table 1 we collected values for the critical flavor numbers NfCrit and Nt obtained with
Schwinger-Dyson (SD) equations or expansions in 1/ Ny, a Gaussian ansatz for the state
of interest in the Schrodinger picture, the functional renormalization group (FRG) and
dedicated lattice simulations.

Table 1: Critical flavor numbers N§'it and N, SD means Schwinger-Dyson and FRG
functional renormalization group. For example, SD-equations predicted that for Ny =
1,2,3 there is a parity condensate () and simulations with staggered fermions that for
Ny =1,2,...,6 thereis a condensate (YV¥).

method ‘ Ngrit Nerit I
SD equations 3.24 6.48
(o)
4.32
1/ N¢-expansion 2.00
<3
Gaussian approximation © o
FRG 5.1
<2
lattice (staggered) (4...6)
6.61
lattice (slac) < 9odd 0.80
lattice (domain wall) (1...2)

Early lattice studies were performed with light staggered fermions to recover the
chiral symmetry in the continuum limit. With the help of an HMC algorithm, simulations
with an even N; and subsequently with non-integer N, have been presented in [18,19]. In a
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subsequent lattice study [20] with a similar setup, the authors concluded that the critical
flavor number is N&'it = 6.6(1).

More recent analytic studies as well as simulations with massless SLAC fermions
yield different results — they favor smaller values of N¢™it. Lattice models with these
chiral fermions have the same internal symmetries as the continuum models. It was
demonstrated, that the U(2N;) symmetry of the reducible model is never broken for any
integer number of 4-component flavors [21]. In a subsequent publication the critical flavor
number N = 0.80(4) has been calculated [22]. Reducible Thirring models with an odd
number of flavors behave differently from the reducible models. They show a parity broken
phase for N < 9.

Independent simulations with 4-component domain-wall fermions (DWF), in which
one adds an extra dimension to the Dirac operator, pointed to a critical flavor number
N&t below 2 [23] . In a follow-up publication with DWF it was demonstrated, that the
model with N; = 1 shows a phase transition with order parameter [24], implying that
1 < Nt < 2. The discrepancy of the results obtained with SLAC and DW fermions may
be due to uncertainties in the extrapolation to an infinite domain-wall separation. In [24] it
was speculated that the two lattice approaches describe different continuum theories, and
that the bulk DWF formulation more closely conforms to a picture of the strong dynamics
in which the auxiliary vector field resembles a gauge field.

4. Lattice simulations with chiral SLAC derivative

In our simulations we use the chiral and non-local SLAC-derivative on a hypercubic
lattice. The SLAC fermions have been used with great success to

1. calculate the critical coupling of ¢5-theory to high precision [25],

2. obtain an accurate value for the step scaling function in the two-dimensional nonlinear
O(3) model [26],

3. calculate Ward-identities, the ground state structure, low-lying masses and the
breaking or restoration of supersymmetry in low-dimensional supersymmetric Wess-
Zumino models [25,27,28],

4.  find accurate values for the critical exponents of GN model [29,30],

5.  discover inhomogeneous structures in the multi-flavor Z, and U(1) Gross-Neveu
models [31-33].

Lattice models with SLAC fermions have various advantages. In the present context the
most relevant one is that they inherit all global inner symmetries and discrete space-times
symmetries of the continuum models. For example, the reducible lattice Thirring model
in three dimensions is invariant under U(2N;) chiral transformations and Z;-parity. The
lattice derivative a;}ac is anti-hermitean such that id is hermitean. This property is used
to prove that certain fermion operators have no sign problem. Furthermore, the auxiliary
field v, in D, is a non-compact site variable and not a link variable as in some other lattice
formulations. A further advance is that the Dirac operator has no doublers, and no rooting
is necessary to describe systems with a small flavor number. Last but not least SLAC lattice
fermions are cheap compared to local chiral fermions.

It is well-known that the non-local SLAC derivative leads to problems in lattice gauge
theories [34]. Indeed, when the ordinary lattice derivative 0 is replaced by a covariant
derivative D, then one can perform a local gauge transformation which does not change the
action but sends the canonical momentum p = id to the edge of the Briolloin zone, where p
jumps. In case a complete gauge fixing is available (because of the Gribov-problem such a
fixing will not be continuous) the problem with the discontinuous dispersion relation may
be overcome. This has been demonstrated in lower-dimensional supersymmetric gauge
models [35].

4.1. SLAC derivative

To find the SLAC derivative on a finite lattice one first Fourier-transforms a wave
function, multiplies the transformed wave function with the momentum and transforms
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back to coordinate space. In the spatial directions we impose periodic boundary conditions for
which the momenta p; are from 271Z/ N;. We choose the p; symmetric to the origin such
that the edge of the Brillouin zone has maximal distance from the pole of the propagator.
As a result we need an odd number of momenta and hence an odd number of lattice points
N in the spatial directions,

xe{qlk=1,... N}, x=3(k—21), Nsodd. (32)
The anti-symmetric lattice derivative in a given spatial direction takes the form

0 x=ux,
b, =a K (33)

xx! x—x' (=) /
Nsme—wyz XA

where x = x; and x’ = x are sites on the lattice defined in (32).

In the (imaginary) time direction the Fermi field fulfills anti-periodic boundary conditions.
Then the momentum pj is from 271(Z + %) /. To distribute the py symmetric about the
origin we need an even number of py and thus an even number of lattice points in the
time-direction,

x € {xlk=1,...,N¢}, xk:%(k—%), N; even. (34)

In this case the lattice derivative reads

in /

x=x,

a"‘P ) = a"‘P ;) = L k—k' (35)
xx x—x -) i(x—x")/2 /
I\Tlrt sin(x—x")/2 eil=r)/ x#x.

For finite-temperature systems in 2 spatial dimensions the SLAC derivatives BIS}aC take the
form
R = 0 05,0z, 073 = 0z 08 O, 953 = 3 0g,9% (36)

where we abbreviated 5z, = dog, -

Below we shall present the results of simulations at low temperature ona N x (N —1)?2
lattices with N = 8,12, 16, 24. In the simulations we used pseudo-fermions and the rational
HMC-algorithm with operator

N;
(det(DgDO)Nf/ZNPF) o Npp ~2N;. (37)

The inverse of the shifted operator enters the rational approximation based on a multi-mass
conjugate gradient (CG) solver. During the CG iterations the derivative is applied many
times to a pseudo-fermion field. Thereby we make use of a special property of the SLAC
derivative: It is diagonal in momentum space, such that

(Do) (x) = F 7 [ipFl9)(p)] (x) + (10 (x) + m) (), (38)

where F denotes the Fourier transformation. Instead of using a three-dimensional (paral-
lelized) Fourier transformation, we apply one-dimensional Fourier transformations that
are computed in parallel.

To estimate fermion propagators we used Nest =~ 200N stochastic estimators. For
most measurements we generated approximately 5000 configurations. We estimated the
finite size corrections and checked that they are under control.

For the models with N; € [0.5,1.1] we used the parity-even extensions to non-integer
N;. More precisely, after integrating out the fermions we arrive at the effective action (
26) in which N; is only a prefactor. We then continue N, € N to real values. This formal
procedure is similar to other studies where N, only appears as a parameter but we should
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stress that for N; ¢ N such a definition most likely does not describe a local quantum field
theory in the continuum. In particular, reducible models with half-integer N, obtained via
this procedure need not be equivalent to irreducible models with integer Ny = 2N;.

5. Dual formulation and effective potentials

Similarly as in the fermion bag algorithm of Chandrasekharan [36], one can integrate
out the interaction part of the partition sum to obtain a formulation in terms of new spin
like variables kfcbl- € {0,1}, where i relates to the spinor degree of freedom and a4, b to the
flavor degree of freedom [29,37]. For non-local SLAC-fermions the dual formulation is a
bit more involved than for ultra-local staggered fermions. Actually, it is advantageous to
use the Fierz-identity (19) and bosonize the resulting four-Fermi theory. For m = 0 this
yields the tensor-scalar formulation

Cz‘?(ia+iT+i¢)‘P+41\g]trT2+¢ T"=T, ¢ €R, (39)
which is equivalent to the vector formulation of the Thirring model. Differentiating the
Boltzmann factor with respect to the components of the tensor field T, yields the Dyson-
Schwinger equations

(Tap) < (Patpyp) - (40)

Since T transforms under chiral rotations as T — UTU?", the expectation value (T,;)
serves as an order parameter for chiral symmetry. In the scalar-tensor formulation we can
probe for condensates in all channels represented by T,;. For example a parity breaking
condensate, a chirality breaking condensate or a non-time-reversal invariant Haldane-term
[38]. Unfortunately this formulation has a severe sign problem and cannot be used directly
in simulations. But exploiting its dual formulation we are able to express various quantities
of interest, for example coefficients in the expansion of the effective potential, to expectation
values in the sign-problem free vector formulation.

5.1. Effective potential versus condensates

The expectation value (T,;) can be diagonalized by a chiral rotation and it suffices to
calculate the effective potential (denoted by V' to distinguish it from the effective potential
in the vector formulation) on diagonal order parameters (T) = t;H’, where {H'} forms a
basis of the space of diagonal hermitean matrices,

2Ny N

V({Tw)) = **108 Z Z”nz . (41)

n=0i=

With the help of the dual formulation one proves that the coefficients a,, ; are given by
expectation values of powers of fermion bilinears and these expectation values can be
calculated in the vector formulation.

The minima of V are attained for fields

(T)min:%diag(l,_...,l,—l,...,—l), ny>n_, (42)

ny n_

where permutations of the diagonal elements lead to equivalent minima. The physically
distinct ones are characterized by the amplitude x and by

0,2,4,...,N;, for N, ,
nen,—n _{ t, for Nfeven (43)

1,3,5,...,Nf for N¢, odd.
An order parameter (42) with x > 0 gives rise to the symmetry breaking pattern

U(Nf) @ Zy — U(ny) @ U(n-), (44)
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which is different for an odd and an even number of irreducible flavors. For example, for
three and four flavors we find

Ni=4: (mny,n)e€{(0,22), (2,31), (44,0)}, (45)
Ne=5: (m,ny,n_)e{(1,32), (3,41), (55,0)}. (46)

Only reducible models with even Ny = 2N permit a symmetry breaking with n = 0, in
which case U(2N;) breaks to U(N;) x U(N;). This breaking is induced by a staggered con-
densate Y (—1)"¢,1,, which corresponds to a chiral condensate ¥ (and not the Haldane
mass) in the reducible formulation, see eq. (25). In this channel the broken system is parity
invariant. In Figure 1 the potentials for Ny = 4 and the three feasible breaking patterns
in (45) are depicted. The left panel shows the analytic results in the strong coupling limit
whereas the right panel shows the results of simulations on a 16 x 15 x 15-lattice with
inverse coupling A = N;/2g? = 0.118.

3.5 T T T T T
n=4
n=2
n=0

T

T

0.5 | | | | | | | - | i
-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 o0 080 o000 080 100

Figure 1. Effective potential for the three channels of the Thirring model with N; = 2 or equivalently
Ni = 4 flavors. Left panel: strong coupling limit. Right panel: simulation on a lattice with N = 16
and inverse coupling A = 0.118. Figures taken from [21] .

We see that in all three channels the minimum of the effective potential is at (T) = 0.
Thus we do not observe spontaneous symmetry breaking (SSB) for the given A and on
the chosen lattice. With increasing inverse coupling A the minima at the origin get more
pronounced and the only way to see SSB is to decrease A. We shall see below, that for all
admitted values of A we see no SSB in the reducible models.

For an odd number of irreducible flavors the situation looks differently. Figure 2
shows the effective potentials in the three channels (46) available for N¢ = 5.

4.0 0.30 | ‘ :
n=>5
V(x) V()| Zi 1
3.0 0.20 | g
2.5 0.15 -
2.0 0.10
1.5 0.05
1.0 0.00 | \ : ) : .z
-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 0.60  -0.40  -0.20  0.00 0.20 0.40 0.60

Figure 2. Effective potential for the three channels of the Thirring model with N¢ = 5 irreducible
flavors. Left panel: strong coupling limit. Right panel: simulation on a lattice with N = 16 and
inverse coupling A = 0.102. Figures taken from [21].

Again the result in the strong coupling limit is shown in the left panel and the simula-
tion results for A = 0.102 in the right panel. We observe that a condensate (T) withn =5
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forms. This condensate does not break the chiral symmetry U(5) but it breaks parity. If one
decreases the coupling g2 then one observes a transition into the symmetric phase.
An interesting observable in this context is the lattice filling factor

k=

Ny Vv
Z Z kit e (47)
a,b=1x=1

0 MN

2VNf

which relates to the number of states occupied by the interaction on a lattice site — a natural
variable in the dual formulation. It counts how many fermions take part in the non-trivial
interaction. In the weak coupling limit A — co the filling factor vanishes and in the strong
coupling limit A — 0 it is one. It cannot exceed the value k = 1 because of Pauli-blocking
on every site. On the left in Figure 3 we depicted the average lattice filling factor, given by
a 4-Fermi correlation function

1 AZ(N)

for Thirring models with flavor number between 2 and 11 and lattice sizes N = 8,12 and
16. We see clearly that at strong couplings A < Aqit the systems are in a lattice-artifact
phase dominated by Pauli blocking. We also see that the average filling factor does not
suffer much from finite size corrections, in particular in the strong coupling region.

)\ T
1.0 - - oL |
08 | 4 2r 7
-4 L |
0.6 a
6 L |
Ny =2
Ny =3
0.4 | f . -8 - .
mmmm Ny =4
Ny =5 10 | _
02 - Ny =7 .
N =9 ) A2 Np=2 7
mmmm Ny =11 2 i ! A
0.0 | | | | | _14 | I | | I
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

Figure 3. Left: average lattice filling factor (48) on three lattices for every flavor between 2 and
11. Right: With increasing lattice size a singularity of the susceptibility (49) builds up, here for 2
irreducible flavors. Figures taken from [21].

The susceptibility associated with k is given by a 8-Fermi correlation function,

(k) = ~ e DA 05 0), + )

and its dependence on A is seen in the right panel of Figure 3 for the model with Ny = 2
on three different lattice sizes. The dip of the susceptibility increases with the lattice size
and this points to a transition from a strong-coupling lattice artifact phase to a phase which
connects to continuum physics.

5.2. Spontaneous symmetry breaking of parity for odd Ny < N crit

For odd N the approximate critical coupling A* on lattices with N = 8,12 and 16 are
listed in Table 2.
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Table 2: The critical couplings A* separating the artifact phase and physical phase for three
lattice sizes and the Thirring lattice models with an odd number of flavors.

N | Ny=3 5 7 9

8 A* = 0.158(4) 0.098(2) 0.073(2) 0.058(2)
12 A* = 0.149(4) 0.094(3) 0.068(2) 0.054(2)
16 A* = 0.146(4) 0.091(2) 0.068(2) 0.054(2)

A critical coupling A, of a transition, where a condensate forms, must be larger than
A* to stay away from the artifact phase. We have seen earlier that if a condensate forms,
then it is the parity-breaking condensate with n = N;. This means that for odd N the
system is either in the symmetric phase or develops a condensate which does not break
chiral symmetry but only parity. Figure 4 shows the curvature «x of the effective potential in
the direction with n = Nt as function of the inverse coupling. The bars show the estimated
infinite volume extrapolation of A*, such that only values to the right to these bars are in
the phase which connects to continuum physics. For example, for Ny = 3 the effective
potential becomes unstable against condensation of (,1;,) o J,; at the inverse coupling
Ac = 0.172, well outside of the lattice artifact phase at strong couplings A < A* ~ 0.145.

Ne=3 4 54 7 9 11
I I

1.5
1.0

0.5

o %ﬁ ;

0.00 0.05 0.10 0.15 0.20 0.25

Figure 4. The curvature « of the effective potentials at the origin is shown for odd N;. The curvature
is taken in the channel with n = 0, since in the other channels the curvature is larger. Figure taken
from [21].

We observe a similar instability against condensation for all odd flavor numbers
between 1 < Ny < 9. Actually we are not sure that parity is broken for N = 9, since the
critical couplings A* = 0.51 and A, = 0.53, measured on a lattice with N = 20, are almost
identical. But our simulations clearly reveal that there is no broken phase for Ny > 11 and
there is a broken phase for Ny < 7. The critical flavor number NfCrit ~ 9 for two-component
flavors corresponds to a critical flavor number N¢t s 4.5 for four-component flavors and
thus is in good agreement with some of the earlier results in Table 1.

5.3. Special case: Ny =1

While the models with even N¢ have no sign problem, we found numerically that a
possible sign problem for odd N is extremely mild (not observed in our ensembles) for all
N > 3. Only the irreducible single-flavor Thirring model has a severe sign problem that
hinders a direct simulation.

In order to still perform simulations, we formulated a fermion-bag-like algorithm:
Starting from the bosonized Fierz-transformed formulation (22), one expands the Boltz-
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mann factor in powers of the Yukawa interaction

i i) K
Z= /DUDl/JDlp e~ S T Z M, (50)

.1
X, ky;i=0 k!

where S is the lattice action of free SLAC fermions and for simplicity we already set m = 0.
The coefficient A = 1/6g> of ¢ is different from the coefficient A of v,v* in subsections

5.1 and 5.2. The product and sum combine into one large sum over sets of occupation
number variables k,; which only assume the values 0 and 1 due to the Grassmann nature
of ¢ and §. Now, one can see that whenever k,; = 1 the Berezin integrals over ¢’ and ¢!,
are saturated by the Yukawa term. The kinetic term must, hence, contribute trivially which
is equivalent to removing the rows and columns (x,7) from 4. The remaining fermionic
and bosonic integrals decouple leaving a fermion determinant and a bosonic weight factor

Z =Y (-1 w(k) detid[{k.}], (51)
{ke}

where d[{k,}| denotes the reduced fermion operator, the lattice filling factor k has been

defined in (47) and
13%
_ <\/Z / do o eMz> : (52)

One should note that the bosonic integral over oy vanishes whenever k,; # kyo. Thus, we
used the notation ky = ky; = kyo. This result is similar to the fermion bag algorithm [36]
with the notable difference that we do not find "bags" in the sense of connected clusters
due to the non-local nature of chiral SLAC fermions.?

In order to generate the Markov chain, we use simple Metropolis updates starting
from the completely filled lattice with detid[{1,...,1}] = 1. However, we found that
flipping a single k, often yields configurations of vanishing weight such that we also
propose simultaneous flips of two k. To speed up the updates of the fermion determinant,
we employ a combination of matrix determinant lemmas and the Sherman-Morrison-
Woodbury formula.

While we can prove that detid[{k,}] is real and positive [37], the sign factor (—1)kV
remains problematic. But we found numerically that

= 2 k(=1 w(k) detid[{ky}] (53)
Z )

does not suffer the usual increase in variance and instead yields a reliable signal. This
expectation value enters the expression for the local effective potential Vi,.. The latter
characterized the distribution function exp(—Vj,.) of 0y and yields the partition function,

7 = /do-x e_vloc(o'x) (54)

for an arbitrary x. Due to translational symmetry we assume that the distribution of oy is
independent of x. The potential has the form

Vioe(0x) = Ac? +In (a9 + a202), (55)

wherein the coefficients are related in a straightforward way to expectation values of
moments of k. One should stress that V} is not quite the standard constraint effective

2 A much more detailed derivation of these formulae can be found in [37].


https://doi.org/10.20944/preprints202201.0066.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2022 d0i:10.20944/preprints202201.0066.v1

14 of 20

potential. But as it describes the statistics of the local order parameter, we expect it to
accurately describe the physics of the system.

Using the (positive) position of the minimum of the local effective potential as an
order parameter, a detailed study of the system was performed in [37]. Here, we collect the
main results: The critical coupling was found to be

. {0.3804(3) from the condensate, (56)
0.3813(3) from the susceptibility.
The condensate and susceptibility critical exponents are given as
B =0.406(8), v=1.1(3). (57)
The transition to the lattice artifact phase was also analyzed. It occurred at
A* = 0.32838(9). (58)

There, the data was consistent with a second order phase transition which is different
from the behavior of even flavors. However, one should note that its equivalence to the
single-flavor GN model might render the N = 1 Thirring model a special case.

5.4. No spontaneous symmetry breaking for any even N¢ or Ny > 1

For Thirring models with even N — these are equivalent to reducible models with
N; = N - the situation is quite different. Figure 5 shows the curvature « of the effective
potential V at the origin in the different channels for 2 and 4 irreducible flavors. We see that
forall A > A* the curvatures are positive such that no condensate can form in the phase
which connects to continuum physics. This striking result will be further substantiated in
the following sections.

T
I T
6.0 7.0 1T
+++++++++++++++ THT
30 - aaase 17 %%H I
=+
GN(n = Ny) L T i
40 - - b >0 = %%
GN (n = Np)

w = 4.0 — —
20 L N; f 2 | Nf =4

K

3.0 —

+ ES
20 F + g _ ES
T+ i 20 ! e
1 RRE ey

Lr Thn=0 1 1oL v o

‘ Th (n = 0) FXosissnsanenenetodd
0.0 % LLLLLL bbbl 000L < 00 I i
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0.10 0.12 0.14 0.16 X 0.18 0.20 0.22 0.24 0.06 0.08 0.10 0.12 X 0.14 0.16 0.18 0.20

Figure 5. The curvatures «x of the effective potentials in the channels labelled by the integer n defined
in (43). Left: Thirring model with Ny = 2. Right: Thirring model with Ny = 4.

6. Banks-Casher relations

The effective action of the massive reducible Thirring models with Ny = 2N; reads
1
St = 52 / &x o', — Indet (m? — DR), (59)

where Dy has been introduced below (23). It is used to investigate the parity-invariant
condensate of the reducible models in the channel with n = 0, in which the symmetry
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U(2N;) breaks to U(Ny) x U(N;) and in which the effective potential has minimal curvature.
The parity-even condensate is

11 m
Y= — = [ Dok tr| — = | e~ NiSett(v)
VZ/ (4 tr(mz—D(%)e
2m (*® dE
= — J—) E
V/o 2y 2P (E) €0)
and it contains the average spectral density p, defined by

p(E) = o [ Dot e NSuCp, (E). (61)

The spectral density of the Dirac operator iD for a fixed v, is defined by

e f(iDo) = [ _dEf(E)pu(E). (62)
The relation (60) implies that the condensate X vanishes for m — 0 in case the integral
over E is finite. A condensate forms for small m if the integral is proportional to 1/m. This
happens when for a typical configuration there is an abundance of low-lying eigenvalues
of —D3. This is the content of the celebrated Banks-Casher relation which states that in the
infinite volume limit the condensate is proportional to p(0). Figure 6 shows the average
spectral densities for N; = 1 (left panel) and for N, = 0.8 (right panel).

2.0 \ 2.0 T T T T
p(E)
15 | g 15
1.0 - 1.0
0.5 - N=28 0.5 f N=28
N=12 === f y N=12 ===

E N =16 / E N =16

0.0 | | | | 0.0 ‘ 1 | 1 1 1
0.00 0.05 0.10  0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 020 0.25 0.30

Figure 6. The average spectral density p of the Dirac operator for 1 reducible flavor (left panel) and
for 0.8 reducible flavors (right panel) [22].

Whereas small eigenvalues accumulate for the smaller flavor number this does not
happen for one reducible flavor. This clearly indicates that there is no spontaneous breaking
of the chiral symmetry in all reducible Thirring models with N; > 1, in contrast to many
previous studies. It also shows that there is a condensation of small eigenvalues for
N; = 0.8.

7. Spectrum of low-lying states

If the U(2N;)-symmetry were spontaneously broken, the particle spectrum would
reveal the existence of Goldstone modes. In formulations with domain wall fermions the
analysis of the spectrum indicates SSB for N; = 1. This is in conflict with the results
obtained with the effective potential and spectral density for chiral SLAC fermions, which
clearly show that Nt < 1.

To clarify the situations for N; ~ 1 we study the spectrum of light mesons. The four
interpolating operators are

Oa(x) = §(x)(0a @ 0)p(x), Ou(t) =) Ou(t, ), 0<a<3, (63)
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where 0y = 1, and 07, 0», 03 are the Pauli-matrices and we use the reducible formulation
(23) of the Thirring models. Then the expectation values of O3 and O are identified as
chiral and parity condensates. The latter vanishes in the parity-invariant reducible models.
The correlation matrix of the interpolating operators is diagonal, C; (t) = (O () Oy (1)) =
Ca(t)d,p, and is used to extract the masses of the light mesons. One can show that the C;
and C; are equal. If the symmetry U(2) is not broken, then we should see a singlet and
triplet of U(2) in the spectrum. The correlation functions Cy, Cy, C3 belong to this triplet.
On the other hand, if U(2) is spontaneously broken to U(1)® U(1), then we should detect
two Goldstone bosons, related to the interpolating operators O; and O;.

200 900 ‘
Co,N =12

180 800 0, - _
Ci2,N=12 —&—

160 [ 700 C3,N =12

140 600 Co,N =16

120 S Cl’Q,Ni].G —@—
PR O3, N=16 A

100
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400

80 300
60 200 - -
40 . ot 100 .
20 = 1 -y S a0 ’ 4 K o 0
0 ! \ -100 \ I ! \
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Figure 7. The correlation functions Cp, Cq, C; and C; of the interpolating operators for the low-lying

mesons on lattice of various sizes. On the left for N; = 1 and on the right for N, = 0.8 [22].
From the correlation functions on a relatively small lattice with N = 11 and a larger

lattice with N = 15 we extracted the masses given in Table 3. We see that for N, = 1.0 the
masses extracted from C; ; and C3 are comparable. They belong to the expected triplet in
the symmetric phase. On the other hand, for N; = 0.8 we do not see such a triplet. Only m;
and my are degenerate and they are identified as Goldstone particles. In the broken phase
the correlation function Cj falls off rapidly and we cannot extract a reliable value for the
mass on the relatively small lattices considered. Hence this mass is missing in the broken

phase in the Table.
Table 3: Masses of the lightest mesons on two lattices for N; = 1.0 and N; = 0.8 reducible
flavors.
C m(11) m(15) N;

Co 0.21(2) 0.21(2) 1.0

Cia 0.134(3) 0.128(2) 1.0

Cs 0.138(2) 0.131(2) 1.0

Cra 0.103(2) 0.095(3) 0.8

Cs 0.109(4) 0.127(7) 0.8

As earlier we conclude that the critical flavor number N¢"it is smaller than 1. But we
also conclude that it is larger than 0.8.

8. Estimating the critical flavor number N¢"it

To extract a reliable estimate for Nt we performed a detailed finite size analysis of
the susceptibility, 0, (k) in (49) on a grid of Ny-values between 0.5 and 1.0. The simulation
results reveal two dips of the susceptibility for all N; £ 0.78. Three examples are depicted
in Figure 8, left panel. The dips become more pronounced with increasing system size, as
seen in the same Figure on the right. The dip at stronger coupling belongs to the transition
into the lattice artifact phase discussed above. More interestingly, we see a second dip
at weaker coupling (larger A). Most likely it points to a phase transition without order
parameter.
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Figure 8. The susceptibility (49) for Thirring models with N, = 0.7,0.8 and 1.0 reducible flavors
(left panel) and the volume-dependence of the the average filling factor (48)) and corresponding
susceptibility (right panel).

The positions of the susceptibility dips on a fine grid in the (A, N;)-plane near N; ~ 1
are calculated with an expensive scan of the susceptibility as function of the inverse
coupling A. The resulting phase transition lines of the (probably first order) ubiquitous
lattice artifact transitions and of the (probably smooth) new transitions for all N; g 0.78(4)
are depicted in Figure 9.
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Figure 9. The dip positions of the susceptibility d, k.

If this interpretation is correct — further studies are needed to answer this question —
then one could construct a continuum limit at a transition without order parameter. Since
there is no transition with order parameter for all reducible lattice Thirring models with
N; > 1, such an unusual transition is needed to relate the lattice models to continuum
physics. Transitions without local order parameter have been reported previously in
strongly coupled Fermi systems [39]. For unrealistically small N;  0.76 there is one phase
transition with order parameter. Actually, in [22] the maximum of the parity-invariant
condensate has been measured and the results show clearly that a condensate forms at
these small N;.

9. Summary

In this paper, we reviewed our current knowledge about spontaneous symmetry
breaking in 1+2D Thirring models. For odd irreducible flavor numbers, these models
spontaneously break parity symmetry below

NEtt ~ 9. (64)
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For N; = 1, previously unpublished values from [37] for the critical couplings and critical
exponents where given in (56) and (57).

We have collected strong evidence that the critical flavor number of the reducible
Thirring models is below N; = 1. We calculated the spectral density, the spectrum of scalar
and pseudo-scalar mesons as function of the flavor number N; between 0.5 and 1.0 and the
maximum of the chiral condensate [21,22]. As a result we find a critical flavor number

NeTit = 0.80(4) . (65)

In particular, we spotted two Goldstone bosons only for N, < Nfrit. Since a non-integer
value of N; probably does not describe a local quantum field theory, we conclude that
there is no SSB in all reducible Thirring models. The critical value extracted from a
combined analysis of all available data is a bit higher than the value 0.78 extracted from
the susceptibility alone, but the two values 0.80 and 0.78 are compatible within the quoted
statistical errors.

Simulations based on DWF with a large extra dimension spot a second order phase
transition for one reducible flavor. From a fit to the equation of state the critical exponents
d =4.17(5) and n = 0.320(5) have been estimated [40]. Similar values have been extracted
by the same authors in a previous study [24]. With DWF a bilinear condensate forms at
the transition, in contrast to the results obtained with chiral SLAC fermions. On the other
hand, in simulations with DWF no transition without order parameter, as monitored by
the fermionic 8-point function in Figure 8, is reported. With ongoing simulations this issue
will hopefully be settled in the near future.

To correctly interpret the lattice results one must stay away from the lattice-artifact
phase which in the dual formulation is well understood: as for gauge theories at large
chemical potential there is Pauli-blocking on the lattice sites if the Thirring coupling exceeds
a critical value. Our results are based on dedicated simulations with chiral SLAC fermions
which respect all global inner symmetries and discrete space-time symmetries, such that
there is no doubt that the lattice models represent the Thirring models in the continuum.
One of the most pressing problem is the nature of the newly found (probably second order)
phase transition without order parameter. We hope to report on this issue in a future work.
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