Bearings are widely used in various types of electrical machinery and equipment. As their core components, failures will often cause serious consequences . At present, most methods of parameter adjustment are still manual adjustment of parameters. This adjustment method is susceptible to prior knowledge and easy to fall into the local optimal solution, failing to obtain the global optimal solution and requires a lot of resources.Therefore, this paper proposes a new method of bearing fault diagnosis based on wavelet packet transform and convolutional neural network optimized by simulated annealing algorithm.The experimental results show that the method proposed in this paper has a more accurate effect in feature extraction and fault classification compared with traditional bearing fault diagnosis methods. At the same time, compared with the traditional artificial neural network parameter adjustment, this paper introduces the simulated annealing algorithm to automatically adjust the parameters of the neural network, thereby obtaining an adaptive bearing fault diagnosis method. To verify the effectiveness of the method, the Case Western Reserve University bearing database was used for testing, and the traditional intelligent bearing fault diagnosis method was compared. The results show that the method proposed in this paper has good results in bearing fault diagnosis. Provides a new way of thinking in the field of bearing fault diagnosis in parameter adjustment and fault classification algorithms
Keywords:
Subject: Engineering - Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.